1 概述

1.1 项目背景

金是人类最早发现的金属之一,比铜、锡、铅、铁、锌都早。金是金属中最富有延展性的一种,金的熔点较高达 1063°C。金的化学性质非常稳定,任凭火烧,也不会锈蚀。主要被用作货币、装饰品。由于黄金硬度不高,容易被磨损,一般不作为流通货币。现今,随着生产技术水平的发展,黄金已成了工业原料。作为硬通货,黄金一直用于货币储备,作为国际付款和银行金融界的交换基础。我国对外贸易增加,黄金需求量不断增大,因此,勘查和开发金矿资源不但对当地的经济建设有促进作用,而且对整个国民经济建设也具有重要意义。

中央"一带一路"战略的实施,新疆维吾尔自治区迎来了大发展、大开发的机遇。伴随近十年来国民经济的快速发展,有色金属、黄金等行业作为国民经济的资源产业也快速发展。因此,国家适时提出坚持科学发展观、可持续发展观。国内投资需求增加的趋势已经出现转强的迹象,经过较长时间行业谷底期,有色、黄金等金属需求减少趋势开始扭转,黄金价格开始回升,黄金的需求与金矿的开采息息相关。

矿产金是世界黄金市场的主要供应者,二十多年来,矿产金产量逐年增加。世界现查明的黄金资源量为 8.9 万 t,储量基础为 7.7 万 t,储量为 4.8 万 t。世界上有 80 多个国家生产金。南非占世界查明黄金资源量和储量基础的 50%,占世界储量的 38%;美国占世界查明资源量的 12%,占世界储量基础的 8%,世界储量的 12%。除南非和美国外,主要的黄金资源国是俄罗斯、乌兹别克斯坦、澳大利亚、加拿大、巴西等。目前我国黄金产量 190t 左右,而国内的黄金市场的需求量远高于生产量,国内的黄金市场存在供需不平衡的矛盾,黄金在我国消费市场的需要主要反映在饰品业和工业上。随着中国内地黄金期货交易的开展及现货交易的放开和黄金市场的不断完善必然会进一步繁荣金市,从市场黄金需求量看,总体也呈上升趋势,开采金矿有很好的市场前景和较佳的社会与经济效益。

萨瓦亚尔顿金矿床处于我国西北边陲,濒临国界线(吉尔吉斯斯坦),位于乌恰县305°方向直距110km,行政区隶属新疆克孜勒苏柯尔克孜自治州乌恰县

乌鲁克恰提乡。

矿山采矿权首次设立时间为 2001 年 3 月,由新疆地矿局第二地质大队首次办理。经多次法人变更,目前采矿权人为新疆同源矿业有限公司,面积 1.7094km²,开采方式为地下开采,批准开采标高为 3925~3400m 标高,生产规模为 14×10⁴t/a,开采年限为 23 年,新疆同源矿业有限公司未开采。2022 年 8 月新疆紫金黄金有限公司收购萨瓦亚尔顿金矿,拟设计开采规模为 8000t/d,264×10⁴t/a 金矿石,服务年限 25 年,采取先露天后地下开采方式,主要开采对象为IV号矿体和 I 号矿体。IV号矿体和 I 号矿体上部均出露地表,矿体平均厚度约 15~25m。矿体垂直延深较大,其中IV号矿体最大垂深 894m, I 号矿体最大垂深 478m。

设计开采范围:本次方案露天开采标高: IV号矿体+3692~+3248m; I号矿体+3968~+3752m。地下开采标高: IV号矿体+3600~+2820m; I号矿体+3752~+3390m。

本工程依托的选矿厂及尾矿库已进行同步工程设计,另做环评工作,不在本次评价范围内。

1.2 环境影响评价的工作过程

根据《中华人民共和国环境保护法》(2015年1月1日)、《中华人民共和国环境影响评价法》(2018年12月29日)、《建设项目环境保护管理条例》(国务院令第682号)和生态环境部《建设项目环境影响评价分类管理名录》(2021年版)等有关法律、法规规定,现委托新疆恒升融裕环保科技有限公司承担新疆萨瓦亚尔顿金矿采矿工程环境影响评价工作。接受环评委托后,编制单位立即进行了现场踏勘和资料收集,结合有关资料和当地环境特征,按国家、新疆维吾尔自治区环境保护政策以及环评技术导则、规范的要求,开展了本工程的环境影响评价工作。对本工程进行初步的工程分析,同时开展初步的环境状况调查及公众意见调查。识别本工程的环境影响因素,筛选主要的环境影响评价因子,明确评价重点和环境保护目标,确定环境影响评价的范围、评价工作等级和评价标准,最后制订工作方案。在进一步工程分析,环境现状调查、监测并开展环境质量现状评价的基础上进行环境影响预测及评价,提出减少环境污染和生态影响的环境管理措施和工程措施。从环境保护的角度确定项目建设的可行性,给出评

价结论和提出进一步减缓环境影响的措施,并最终完成环境影响报告书编制。环境影响评价工作一般分为三个阶段,即调查分析和工作方案制定阶段,分析论证和预测评价阶段,环境影响报告书编制阶段,见图 1.2-1(环境影响评价工作程序图)。

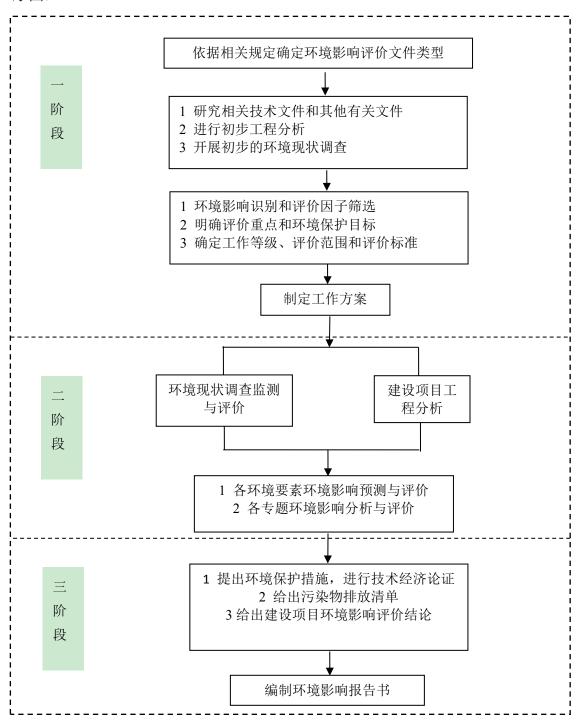


图 1.2-1 环境影响评价工作程序图

1.3 分析判定相关情况

本工程为岩金开采项目,属于有色金属矿采选业,不属于限制类-八、黄金中日处理岩金矿石 100t 以下的采选项目,根据《产业结构调整指导目录》(2019年本),不属于产业政策鼓励类、限制类、淘汰类,视为允许类,本工程的建设符合国家产业政策。

根据中共中央国务院办公厅:《关于划定并严守生态保护红线的若干意见》 文件内容:"生态保护红线是指在生态空间范围内具有特殊重要生态功能、必须 强制性严格保护的区域,是保障和维护国家生态安全的底线和生命线,通常包括 具有重要水源涵养、生物多样性维护、水土保持、防风固沙、海岸生态稳定等功 能的生态功能重要区域,以及水土流失、土地沙化、石漠化、盐渍化等生态环境 敏感脆弱区域",根据《新疆生态功能区划》,本项目不属于划定的重要水源涵 养、生物多样性维护、水土流失重点预防区和重点治理区范围,因此本项目符合 《关于划定并严守生态保护红线的若干意见》的相关规定。

原环保部《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号)中"为适应以改善环境质量为核心的环境管理要求,切实加强环境影响评价(以下简称环评)管理,落实"生态保护红线、环境质量底线、资源利用上线和环境准入负面清单(已改为生态环境准入清单)"以下简称"三线一单"约束,建立项目环评审批与规划环评、现有项目环境管理、区域环境质量联动机制(以下简称"三挂钩"机制),更好地发挥环评制度从源头防范环境污染和生态破坏的作用,加快推进改善环境质量"。"在生态保护红线范围内,严控各类开发建设活动,依法不予审批新建工业项目和矿产开发项目的环评文件",本项目环评期间通过对项目区附近的环境质量进行监测调查,项目区环境质量达到区域环境质量标准的要求,同时本项目不在拟划定的生态保护红线范围内,因此本项目符合环保部《关于以改善环境质量为核心加强环境影响评价管理的通知》的相关要求。

根据《新疆维吾尔自治区重点行业环境准入条件(修订)》中关于金属矿采选行业环境准入条件要求: "铁路、高速公路、国道、省道等重要交通干线两侧200米范围以内(禁止在铁路、国道、省道两侧的直观可视范围内进行露天开采),

重要工业区、大型水利工程设施、城镇市政工程设施所在区域,军事管理区、机场、国防工程设施圈定的区域,居民聚集区 1000 米以内、伊犁河、额尔齐斯河等重要河流源头区、水环境功能区划为 I、II 类和具有饮用功能的 III 类水体岸边 1000 米以内,其它 III 类水体岸边 200 米以内,禁止新建或改扩建金属矿采选工程,存在山体等阻隔地形或建设人工地下水阻隔设施的,可根据实际情况,在确保不会对水体产生污染影响的前提下适当放宽距离要求",本工程矿区IV号矿体中部有萨瓦亚尔顿河流过,采矿场、工业场地、排土场等采矿配套设施距离萨瓦亚尔顿河不足 1000m,且无山体阻隔,企业采取改河道为隧洞和盖板明渠,减少开采对河道的影响,本工程的建设符合新疆维吾尔自治区重点行业环境准入条件中的相关要求。

根据《新疆维吾尔自治区环境保护条例》第三十条中指出:任何单位和个人不得在水源涵养区、饮用水水源保护区内和河流、湖泊、水库周围建设重化工、涉重金属等工业污染项目;对已建成的工业污染项目,当地人民政府应当组织限期搬迁。本工程采矿工程不属于《关于进一步加强重金属污染防控的意见》中重点重金属(铅、汞、镉、铬、铊、锑、砷)工业污染项目,在采取改河道为隧洞和盖板明渠后矿区位于水土保持区,不在水源涵养区、饮用水水源保护区内和河流、湖泊、水库等范围内,符合《新疆维吾尔自治区环境保护条例》的相关要求。

根据克孜勒苏柯尔克孜自治州"三线一单"生态环境分区管控方案要求,矿区范围、工业场地及排土场等矿建设施位于乌恰县一般管控区(一般管控单元),本工程为有色金属采矿业,生态功能区划为水土保持区,不属于限制和禁止开发建设区域。本工程的建设符合《新疆维吾尔自治区"三线一单"生态环境分区管控方案》及《克孜勒苏柯尔克孜自治州"三线一单"生态环境分区管控方案》中的相关要求。

本项目位于新疆维吾尔自治区克州乌恰县西北方向直距 110km 处,矿区范围属于《新疆维吾尔自治区矿产资源总体规划(2021-2025 年)》划定的西南天山黑色、有色及贵金属勘查开发区的萨瓦亚尔顿金矿,符合《新疆维吾尔自治区矿产资源总体规划(2021-2025 年)》的相关要求。

本工程所在地不属于依法划定的自然保护区、风景名胜区和饮用水水源保护区,也不属于地质灾害危险区等生态脆弱区;矿区所采用方法均为国内普遍运用

的采矿方法,矿井涌水循环使用不外排,废石均暂存于排土场内,后期用于采空 区回填,综合利用。因此,本工程建设符合《矿山生态环境保护与污染防治技术 政策》。

本项目开采矿种主要为金矿石,矿区建设对发展有色工业有积极作用,符合《新疆维吾尔自治区国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》(2021 年 2 月 5 日新疆维吾尔自治区第十三届人民代表大会第四次会议通过)中的相关规定,同时,本工程的建设也符合《克孜勒苏柯尔克孜自治州国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》中的相关内容。

综上, 本工程的建设符合相关法律法规、规划及政策要求。

1.4 关注的主要环境问题及环境影响

本工程运营期以废气、废水、固废处置、生态破坏为主要污染特征,主要关注大气污染物处理措施合理性、矿井涌水回用可行性及依托可行性、生活污水处理及排放去向、固废处置可行性等,还需重视项目施工及运营引发的环境影响能否满足区域环境功能,重点关注金矿开采活动中地表错动、地表沉陷等地质灾害对周边环境的影响,采取的生态恢复措施的可行性,以及矿井涌水及排土场淋溶水对萨瓦亚尔顿河的影响,采取的污染防治措施能否保证各项污染物达标排放,项目环境风险是否可以接受。

因此,本工程环境影响评价以生态环境影响分析、水环境影响评价、工程分析、大气环境影响预测与评价、固体废弃物影响分析、环保治理措施及经济技术可行性分析作为本次评价的重点。

1.5 环境影响评价的主要结论

矿山设计采矿规模为180万t/a,根据《国民经济行业分类》(GB/T4754-2017),本工程属于金矿采选业(B0921);根据《建设项目环境影响评价分类管理名录》(2021年版),本工程属于"七、有色金属矿采选业,092贵金属矿采选"。根据《产业结构调整指导目录》(2019年本),不属于产业政策鼓励类、限制类、淘汰类,视为允许类,因此符合国家产业政策。

本工程在采取改河道为隧洞和盖板明渠,减少开采对河道的影响,选址与空

间布局符合性及污染防治与环境影响符合性,满足《新疆维吾尔自治区重点行业环境准入条件(修订)》(原新疆维吾尔自治区环境保护厅,2017年1月)的有关要求。

本工程的建设符合《新疆维吾尔自治区"三线一单"生态环境分区管控方案》 及《克孜勒苏柯尔克孜自治州"三线一单"生态环境分区管控方案》中的相关要求, 也符合《新疆维吾尔自治区矿产资源总体规划(2021~2025 年)》中的相关要求。

本工程的建设与发展符合《新疆维吾尔自治区国民经济和社会发展第十四个 五年规划和 2035 年远景目标纲要》《克孜勒苏柯尔克孜自治州国民经济和社会 发展第十四个五年规划和 2035 年远景目标纲要》。

本工程符合清洁生产要求,环评要求建设单位积极开展清洁生产审核工作,采用国内先进的工艺设备,提高工业水重复利用率,加强废石综合利用,按照清洁生产二级标准执行环境管理工作;项目产生的各类污染物均采取了有效的防治措施,可达标排放并符合总量控制要求;本工程在有效的采取地表水和地下水保护措施后,对周围环境产生影响较小;环境风险水平在可接受程度内;公众参与调查工作中,未收到公众对该项目的反馈意见。建设单位应加强环保设施的运行维护和管理,保证各种环保设施的正常运行和污染物长期稳定达标排放,在落实并保证以上条件实施的前提下,从环保的角度分析,该项目的建设是可行的。

在报告书的编制过程中,得到了克州生态环境局、克州生态环境局乌恰县分局及建设单位等的指导与帮助并获得了建设单位的积极配合,在此一并表示感谢!

2 总则

2.1 编制依据

2.1.1 法律法规

序号		会议、主席令、文号	实施时间
_	环境保护相关	去律	
1	《中华人民共和国环境保护法》	12 届人大第 8 次会议	2015-01-01
2	《中华人民共和国环境影响评价法》	13 届人大第7次会议	2018-12-29
3	《中华人民共和国大气污染防治法》	13 届人大第 6 次会议	2018-10-26
4	《中华人民共和国水污染防治法》	12 届人大第 28 次会议	2018-01-01
5	《中华人民共和国噪声污染防治法》	13 届人大第 32 次会议	2021-12-24
6	《中华人民共和国固体废物污染环境防治法》	13 届人大第 17 次会议	2020-09-01
7	《中华人民共和国土壤污染防治法》	13 届人大第 5 次会议	2019-01-01
8	《中华人民共和国水法》	12 届人大第 21 次会议	2016-07-02
9	《中华人民共和国水土保持法》	11 届人大第 18 次会议	2011-03-01
10	《中华人民共和国清洁生产促进法》	11 届人大第 25 次会议	2012-07-01
11	《中华人民共和国循环经济促进法》	13 届人大第 6 次会议	2018-10-26
12	《中华人民共和国节约能源法》	13 届人大第 6 次会议	2018-10-26
13	《中华人民共和国城乡规划法》	10届人大第30次会议	2018-01-01
14	《中华人民共和国矿产资源法》	11 届人大第 10 次会议	2009-08-27
15	《中华人民共和国矿山安全法》	主席令 第 18 号	2009-08-27
16	《中华人民共和国安全生产法》	12 届人大第 10 次会议	2014-08-31
17	《中华人民共和国突发事件应对法》	10 届人大第 29 次会议	2007-11-01
18	《中华人民共和国森林法》	13 届人大第 15 次会议	2020-07-01
19	《中华人民共和国野生动物保护法》	16届人大第6次会议	2018-10-26
=	行政法规与国务院发布的	的规范性文件	_
1	《建设项目环境保护管理条例》	国务院令 682 号	2017-10-01
2	《中华人民共和国野生植物保护条例》	国务院令 687 号	2017-10-07
3	《地质灾害防治条例》	国务院令 394 号	2004-03-01
4	《中华人民共和国道路交通安全法实施条例》	国务院令 687 号	2017-10-07
5	《民用爆炸物品安全管理条例》	国务院令 466 号	2006-09-01
6	《矿产资源开采登记管理办法》	国务院令 241 号	2014-07-09
7	《土地复垦条例》	国务院令 592 号	2011-02-22
8	《土地复垦条例实施办法》	国土资源部第56号令	2013-03-01
9	《中华人民共和国矿山安全法实施条例》	劳动部令第4号	1996-10-30

序号	依据名称	会议、主席令、文号	实施时间	
10	《危险化学品安全管理条例》	国务院令 591 号	2011-12-01	
11	《中华人民共和国河道管理条例》	国务院令 687 号	2017-10-07	
12	《中华人民共和国土地管理法实施条例》	国务院令 653 号	2014-07-29	
13	《国务院关于加强环境保护重点工作的意见》	国发〔2012〕35 号	2011-10-17	
14	中共中央办公厅、国务院办公厅印发《关于划定	,	2017 02 07	
14	并严守生态保护红线的若干意见》	/	2017-02-07	
15	《危险废物转移管理办法》	部令 23 号文	2022-01-01	
16	《中共中央国务院关于深入打好污染防治攻坚战		2021-11-02	
16	的意见》	/	2021-11-02	
三	部门规章与部门发布的	规范性文件		
1	《关于进一步加强企业安全生产工作的通知》	国发〔2010〕23 号	2010-07-19	
2	《国务院关于加强节能工作的决定》	国发〔2006〕28号	2006-08-06	
3	《国务院关于落实科学发展观加强环境保护的决	国发〔2005〕39号	2005-12-03	
3	定》	国及(2003)39 与		
4	《国务院关于全面加强生态环境保护坚决打好污	中共中央、国务院发布	2021.11.02	
	染防治攻坚战的意见》	一个六个人、	2021.11.02	
5	《建设项目环境影响评价分类管理名录(2021年	 生态环境部令第 16 号	2021-01-01	
	版)》	工心小光明 〈为 10 分	2021-01-01	
6	《全国生态脆弱区保护规划纲要》	环发〔2008〕92 号	2008-09-27	
7	《全国生态功能区划(修编版)》	环保部公告 2015 年第 61	2015-11-13	
		号	2013 11 13	
8	《关于加强河流污染防治工业的通知》	环发〔2007〕201号	2007-12-29	
9	《关于加强国家重点生态功能区环境保护和管理	 环发〔2013〕16号	2013-01-22	
	的意见》	7 (2013) 10 寸	2013 01 22	
10	《关于切实加强风险防范严格环境影响评价管理	 环发〔2012〕98 号	2012-08-07	
	的通知》	1 1 2 1 2 1 2 1 2 1		
11	《矿山生态环境保护与污染防治技术政策》	环发〔2005〕109号	2005-09-07	
12	《产业结构调整指导目录(2019 年本)》	国家发展和改革委员会	2020-01-01	
	") <u> </u>	令〔2013〕第 21 号令		
13	《国家危险废物名录(2021年版)》 生态环境部令第1		2021-01-01	
14	《关于进一步加强环境影响评价管理防范环境风	 环发〔2012〕77 号	2012-07-03	
	险的通知》	1/2 (2012) 11 3	2012 07 03	
15	《国家重点保护野生动物名录》	2021 年第 3 号	2021-02-01	
16	《国家重点保护野生植物名录》	2021 年第 15 号	2021-09-07	
17	《环境影响评价公众参与办法》	生态环境部令第4号	2019-01-01	

序号	依据名称	会议、主席令、文号	实施时间	
18	关于印发《企业事业单位突发环境事件应急预案	环发〔2015〕4号	2015-01-08	
18	备案管理办法(试行)》的通知	小 及(2015)4 亏	2013-01-08	
19	危险废物污染防治技术政策	环发〔2001〕199号	2001-12-17	
20	《关于加强资源开发生态环境保护监管工作的意见》	环发〔2004〕24 号	2004-02-12	
21	《关于以改善环境质量为核心加强环境影响评价 管理的通知》	环环评〔2016〕150号	2016-10-26	
22	《建设项目危险废物环境影响评价指南》	环境保护部办公厅	2017-09-01	
23	《关于加快建设绿色矿山的实施意见》	国土资规〔2017〕4号	2017.03.22	
24	《企业环境信息依法披露管理办法》	生态环境部令第24号	2022.02.08	
四	地方法规及通	知		
1	《新疆维吾尔自治区环境保护条例》	《新疆维吾尔自治区环境保护条例》 13 届人大第 6 次会议		
2	《新疆维吾尔自治区野生植物保护条例》 13 届人大第 6 次会议		2018-09-21	
3	《新疆维吾尔自治区自然保护区管理条例》 13 届人大第 6 次会议		2018-09-21	
4	《新疆维吾尔自治区危险废物污染环境防治办 新疆人民政府令第 163 法》 号		2010-05-01	
5	《新疆维吾尔自治区水环境功能区划》	新政函〔2002〕194号	2002-12	
6	《新疆生态功能区划》 新政函〔2005〕96号		2005-07-14	
7	《新疆维吾尔自治区重点保护野生植物名录(第		2007-08-01	
8	《新疆维吾尔自治区重点保护野生动物名录》	新林动植字〔2000〕201 号	2000-02-01	
9	《新疆维吾尔自治区重点行业环境准入条件》	新环发〔2017〕1号	2017-01-01	
10	《新疆维吾尔自治区大气条例防治条例》	13 届人大第7次会议	2019-01-01	
11	《新疆维吾尔自治区突发环境事件应急预案编制 导则(试行)》	〔2014〕234 号	2014-6-12	
12	《关于进一步做好矿产资源开发环境影响评价工作的通知》	新环自发〔2006〕7号	2006-1	
13	《关于印发新疆维吾尔自治区水土流失重点预防 区和重点治理区复核划分成果的通知》	新水水保〔2019〕4号	2019-1-21	
14	《新疆维吾尔自治区 28 个国家重点生态功能区县(市)产业准入负面清单(试行)》	新发改规划(2017)891 号	2017-6	
15	《新疆维吾尔自治区主体功能区规划》	/	2016-10-24	
16	《新疆维吾尔自治区国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》	新疆维吾尔自治区第十 三届人民代表大会第四 次会议通过	2021-06-04	

序号	依据名称	会议、主席令、文号	实施时间	
17	《克孜勒苏柯尔克孜自治州国民经济和社会发展	克州第十四届人民代表	2021 01 02	
1 /	第十四个五年规划和 2035 年远景目标纲要》	大会第五次会议	2021-01-03	
	《克孜勒苏柯尔克孜自治州乌恰县国民经济和社			
18	会发展第十四个五年规划和 2035 年远景目标纲	/	2021-01	
	要》			
10	关于印发《新疆维吾尔自治区"三线一单"生态	並示(2021) 10 日	2021 02 22	
19	环境分区管控方案》的通知	新政发〔2021〕18号	2021-02-23	
1 20	关于印发《克孜勒苏柯尔克孜自治州"三线一单"	支水力	2021 06 11	
20	生态环境分区管控方案》的通知	克政办发〔2021〕13 号	2021-06-11	
21	《新疆生态环境保护"十四五"规划》	/	2022-01-14	

2.1.2 技术规范

序号	依据名称	标准号
1	《建设项目环境影响评价技术导则 总纲》	НЈ2.1-2016
2	《环境影响评价技术导则 大气环境》	НЈ2.2-2018
3	《环境影响评价技术导则 地表水》	НЈ2.3-2018
4	《环境影响评价技术导则 声环境》	HJ2.4-2021
5	《环境影响评价技术导则 地下水环境》	НЈ610-2016
6	《环境影响评价技术导则 生态影响》	НЈ19-2022
7	《环境影响评价技术导则 土壤环境(试行)》	НЈ964-2018
8	《环境空气质量标准》	GB3095-2012
9	《地表水环境质量标准》	GB3838-2002
10	《地下水质量标准》	GB/T14848-2017
11	《声环境质量标准》	GB3096-2008
12	《土壤环境质量 建设用地土壤污染风险管控标准(试行)》	GB36600-2018
13	《土壤环境质量 农用地土壤污染风险管控标准(试行)》	GB15618-2018
14	《大气污染物综合排放标准》	GB16297-1996
15	《污水综合排放标准》	GB8978-1996
16	《农村生活污水处理排放标准》	DB65 4275-2019
17	《建筑施工场界环境噪声排放标准》	GB12523-2011
18	《污染源源强核算技术指南准则》	НЈ884-2018
19	《一般工业固体废物贮存和填埋污染控制标准》	GB18599-2020
20	《危险废物贮存污染控制标准》及 2013 年修改单	GB18597-2001
21	《黄金行业清洁生产评价指标体系》	2015年6月24日
22	《金属与非金属地下矿山安全规程》	GB16423-2006
23	《金属非金属矿山排土场安全生产规则》	AQ2005-2005

序号	依据名称	标准号
24	《矿山生态环境保护与恢复治理技术规范(试行)》	НЈ651-2013
25	《有色金属行业绿色矿山建设规范》	DZ/T0320-2018

2.1.3 项目相关资料

序号	依据名称	时间
1	新疆萨瓦亚尔顿金矿勘探报告	2022-8
2	新疆萨瓦亚尔顿金矿矿产资源开发利用方案	2022-9
3	新疆萨瓦亚尔顿金矿采矿工程预可行性研究报告	2022-8

2.2 评价原则与目的

2.2.1 评价原则

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建设, 服务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据建设项目的工程内容及其特点,明确与环境要素间的作用效应关系,对建设项目主要环境影响予以重点分析和评价。

2.2.2 评价目的

- (1)通过现场调查、资料收集及环境监测,了解项目所在地自然环境、环境质量现状以及存在的主要环境问题;
- (2)通过工程分析,明确建设项目的主要环境影响,筛选对环境造成影响的因子,尤其关注建设项目产生的主要污染因子。并通过类比调查、物料衡算,核算污染源源强,预测项目建设对环境影响的程度与范围;
- (3) 从工艺着手,分析生产工艺、生产设备及原辅材料的消耗,掌握主要污染源及排放状况:
- (4)通过分析和计算,预测污染物排放对周围环境敏感目标(天山南脉水源涵养生态保护红线区、萨瓦亚尔顿河)的影响程度,判断其是否满足环境质量标准和总量控制要求:

- (5) 从技术、经济角度分析拟采取的环保措施的可行性,为项目环保措施的设计和环境管理提供依据;
- (6)从环保法规、产业政策、环境特点、污染防治等方面进行综合分析, 对拟建项目的环境可行性做出明确结论,为项目的决策、污染控制和环境管理提 供科学依据。

2.3 环境影响因素识别和评价因子筛选

2.3.1 环境影响因素识别

本工程位于新疆维吾尔自治区克孜勒苏柯尔克孜自治州乌恰县境内,在乌恰县 305°方向直距 110km 处,行政区划属乌恰县管辖。根据本工程的性质、工程特点、阶段(施工期、运营期、闭矿期)和所在区域的环境特征,识别本工程建设实施对评价区域自然环境可能产生的环境影响因素,为筛选评价因子提供依据。本工程施工期和运营期环境影响因素一览表见表 2.3-1。

评			环境要素								
价	运 洲.回丰	T7* L32:	地	րբ —	声			生态			17 bit
时	污染因素	环境 空气	表	地下	环	kit juh	土壤土	水土	自然	野生	环境
段		27	水	水	境	植被	地利用	流失	景观	生物	风险
施	土建工程 土地平整	-2D	-1D		-1D	-1D	-1D	-2D	-1D	-1D	
工	物料运输	-1D	-1D		-1D					-1D	
期	施工安装	-1D	-1D		-1D				-1D	-1D	
_	原料/成品 运输	-1C	-1C	-1C	-1D	-1D					-1C
运	废气排放	-2C				-1C					-1D
营	废水排放		-1C	-1C		-1C	-1C				-1D
期	噪声排放				-1C					-1C	
	固废处置	-1C	-1C	-1C		-1C	-2C	-1C	-1C		-1C
闭矿期	生态恢复					+2C	+2C	+1C		+1C	

表 2.3-1 主要环境影响因素识别表

评						环	境要素				
价	运 外.田主	17 13¢	地	₩下	声			生态			17 bit
时	污染因素	环境	表	, ,	环	 	土壤土	水土	自然	野生	环境
段		空气	水	水 	境	植被	地利用	流失	景观	生物	风险

备注:

- 1、表中"+"表示有利影响,"一"表示不利影响;
- 2、表中数字表示影响的相对程度, "1"表示影响较小, "2"表示影响中等, "3"表示影响较大;
- 3、表中"D"表示短期影响, "C"表示长期影响。

2.3.2 评价因子筛选

根据项目特点、污染物排放特征及所在地区环境质量状况,将最终对环境影响较大的污染因子作为主要污染因子,见表 2.3-2、2.3-3。

表 2.3-2 本工程主要污染因子识别

环境要素	现状评价因子	影响评价因子
环境空气	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、O ₃ 、TSP	TSP、CO、NOx、THC
地表水环	pH 值、氨氮、溶解氧、化学需氧量、五日生化需氧量、 石油类、阴离子表面活性剂、总磷、铅、锌、铜、六 价铬、镉、高锰酸钾指数、硫酸盐、氯化物、挥发酚、 硝酸盐、砷、汞、氟化物	pH 值、SS、COD、氨氮
地下水环境	K ⁺ 、Na ⁺ 、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ₃ ⁻ 、Cl ⁻ 、SO ₄ ²⁻ 、pH 值、总硬度、溶解性总固体、铁、锰、铜、锌、挥发性酚类、氨氮、总大肠菌群、亚硝酸盐、硝酸盐、氰化物、氟化物、汞、砷、镉、铬(六价)、铅、镍	镍
声环境	昼间、夜间等效连续 A 声级	昼间、夜间等效连续 A 声级
固体废物	/	采矿废石、废机油、生活垃 圾等
土壤环境	pH、含盐量、砷、镉、铬(六价)、铜、铅、汞、镍、锌、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1.2-二氯乙烷、1,1-二氯乙烯、灰-1.2-二氯乙烯、二氯乙烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2-四氯乙烷、1,1,2-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯,1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并(a) 乾、苯并(b) 荧蒽、苯并(k) 荧蒽、菌、二	pH、含盐量、镍

环境要素	现状评价因子	影响评价因子
	苯并〔a, h〕蔥、茚并〔1, 2, 3-cd〕芘、萘	
小大 玩总	植被类型、土壤类型、土地利用现状、水土流失现状、	植被破坏、水土流失、地表
生态环境	地表塌陷现状	塌陷、地表错动等
		爆破器材库火灾爆炸产生的
环境风险	,	伴生/次生污染物排放、危废
小児八四	/	暂存间废油泄漏、废石场崩
		塌、采区塌陷沉降等

表 2.3-3 生态影响评价因子一览表

受影响对象	评价因子	工程内容及影响方式	影响性质	影响程度
物种	分布范围、种群数量、种 群结构、行为	采掘、排土;直接生态 影响	长期、可逆	弱
生境	生境面积、质量、连通性	直接生态影响	长期、可逆	弱
生物群落	物种组成、群落结构	采掘、排土; 直接生态 影响	长期、可逆	弱
生态系统	植被覆盖度、生产力、生 物量、生态系统功能	采掘、排土;直接生态 影响	长期、可逆	弱
生物多样性	物种丰富度、均匀度、优 势度	采掘、排土;间接生态 影响	长期、可逆	弱
自然景观	景观多样性、完整性	直接生态影响	长期、可逆	弱

2.4 环境功能区划和评价标准

2.4.1 环境功能区划

2.4.1.1 环境空气功能区划

根据《环境空气质量标准》(GB3095-2012)及 2018 年修改单,本工程位于乌恰县 305°方向直距 110km 处,项目所在区域为环境空气功能二类区。

2.4.1.2 水环境功能区划

(1) 地表水

萨瓦亚尔顿河流经IV号矿带各矿体上盘,萨瓦亚尔顿河为克孜勒苏河上游支流,根据《中国新疆水环境功能区划》,克孜勒苏河为 I 类水体,因此萨瓦亚尔顿河为 I 类水体,为季节性水系,执行《地表水环境质量标准》(GB3838-2002)中的 I 类水质标准。

(2) 地下水

项目所在区域地下水未进行功能区划分,根据其用途执行《地下水质量标准》 (GB/T14848-2017) III类标准。

2.4.1.3 声环境功能区划

矿区位于山区,远离市区、村镇,主要功能为工业生产,根据《声环境质量标准》(GB3096-2008)中声环境功能区的划分要求,本工程属于2类声环境功能区。

2.4.1.4 土壤功能区划

本工程矿区、工业场地及排土场用地性质为工矿用地,根据《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018),本工程属于第二类用地中的工业用地(M)。

2.4.1.5 生态功能区划

根据《新疆生态功能区划》,项目区属 III 天山山地温性草原、森林生态区 -III₃ 天山南坡草原牧业、绿洲农业生态亚区-39.天山南坡西段荒漠草原水土流失敏感生态功能区。主要生态服务功能为土壤保持、荒漠化控制。

2.4.2 评价标准

2.4.2.1 环境质量标准

(1) 大气环境质量标准

根据环境功能区划,环境空气质量评价中 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO、 O_3 、TSP 七项指标执行《环境空气质量标准》(GB3095-2012)二级标准,指标标准取值见表 2.4-1。

	₹ 2.4-1	小说工(灰里柳框	(辛位: mg/Nm /	
序号	污染物	浓度限值	直	标准来源
		年平均	0.06	
1	二氧化硫(SO ₂)	24 小时平均	0.15	
		1 小时平均	0.5	《环境空气质量
		年平均	0.04	标准》
2	二氧化氮(NO ₂)	24 小时平均	0.08	(GB3095-2012)
		1 小时平均	0.2	二级标准
2	复以型(GO)	24 小时平均	4	
3	一氧化碳(CO)	1 小时平均	10	

表 2.4-1 环境空气质量标准 (单位: mg/Nm³)

序号	污染物	浓度限值		标准来源
4	白层(0)	日最大8小时平均	0.16	
4	臭氧(O₃)	1 小时平均	0.2	
,	D) (年平均	0.07	
5	PM_{10}	24 小时平均	0.15	
	D) (年平均	0.035	
6	$PM_{2.5}$	24 小时平均	0.075	
7	TCD	年平均	0.2	
/	TSP	24 小时平均	0.3	

(2) 水质量标准

萨瓦亚尔顿河流经IV号矿带各矿体上盘,萨瓦亚尔顿河为克孜勒苏河上游支流,根据《中国新疆水环境功能区划》,克孜勒苏河为 I 类水体,因此萨瓦亚尔顿河为 I 类水体,为季节性水系,执行《地表水环境质量标准》(GB3838-2002)中的 I 类水质标准。

地下水执行《地下水质量标准》(GB/T14848-2017)中 III 类标准,具体标准值见表 2.4-2。

表 2.4-2 水环境质量标准 单位: mg/L

序号	项目	标准限值	标准来源
1	pH 值	6~9	
2	氨氮	≥0.15	
3	化学需氧量	≤15	
4	五日生化需氧量	≤3	
5	氟化物	≤1.0	
6	氰化物	≤0.005	
7	六价铬	≤0.01	《地表水环境质量标
8	硫化物	≤0.05	准》(GB3838-2002)
9	挥发酚	≤0.002	I 类标准
10	阴离子表面活性剂	≤0.2	
11	锰	≤0.1	
12	锌	≤0.05	
13	砷	≤0.05	
14	汞	≤0.00005	
15	铅	≤0.01	

序号	项目	标准限值	标准来源
16	硒	≤0.01	
17	石油类	≤0.05	
18	硫酸盐	≤250	
19	氯化物	≤250	
1	pH 值(无量纲)	6.5~8.5	
2	总硬度	≤450	
3	溶解性总固体	≤1000	
5	硫酸盐	≤250	
6	氯化物	≤250	
7	铁	≤0.3	
8	锰	≤0.10	
9	锌	≤1.00	
10	挥发酚	≤0.002	
11	氨氮	≤0.5	
12	亚硝酸盐氮	≤1.00	《地下水质量标准》
13	氰化物	≤0.05	(GB/T14848-2017)
14	硝酸盐	≤20	中 III 类标准
15	氟化物	≤1.0	
16	汞	≤0.001	
17	砷	≤0.01	
18	镉	≤0.005	
19	六价铬	≤0.05	
20	铅	≤0.20	
21	镍	≤0.02	
22	高锰酸盐指数	/	
23	细菌总数	≤100	
24	总大肠菌群	≤3	

(3) 声环境质量标准

声环境执行《声环境质量标准》(GB3096-2008)中 2 类标准。具体标准值见表 2.4-3。

表 2.4-3 声环境质量标准 单位: dB(A)

	标准限		
声环境功能区类别	昼间	夜间	
2 类	60	50	

(4) 土壤风险管控标准

本工程属于《城市用地分类与规划建设用地标准》(GB50137-2011)中规定的二类工业用地(M2),因此土壤环境质量执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的第二类筛选值标准;本工程占地范围外部分天然草地,土壤环境质量执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)中的筛选值标准;评价标准限值见表 2.4-4。

表 2.4-4 建设用地、农用地土壤污染风险管控标准 单位 mg/kg

表 2.4-4		建设用地、农用地土壤	表行架风险官1	空标准 単位 mg/kg		
类别	序号	污染物项目	标准值	执行标准		
重金属和无机物						
	1	砷	60			
	2	镉	65			
۶۶ 44 FT III.	3	铬 (六价)	5.7	《土壤环境质量 建设用地土		
第二类用地 筛选值	4	铜	18000	壤污染风险管控标准》		
师 选阻	5	铅	800	(GB36600-2018)		
	6	汞	38			
	7	镍	900			
		挥发性	上有机物			
	8	四氯化碳	2.8			
	9	氯仿	0.9			
	10	氯甲烷	37			
	11	1, 1-二氯乙烷	9			
	12	1,2-二氯乙烷	5			
	13	1,1-二氯乙烯	66			
۶۶ 44 FT ابار	14	顺-1,2-二氯乙烯	596	《土壤环境质量 建设用地土		
第二类用地 筛选值	15	反-1,2-二氯乙烯	54	壤污染风险管控标准》		
师 选阻	16	二氯甲烷	616	(GB36600-2018)		
	17	1,2-二氯丙烷	5			
	18	1, 1, 1, 2-四氯乙烷	10			
	19	1, 1, 2, 2-四氯乙烷	6.8			
	20	四氯乙烯	53			
	21	1,1,1-三氯乙烷	840			
	22	1,1,2-三氯乙烷	2.8			

类别	序号	污染物项目	标准值	执行标准
	23	三氯乙烯	2.8	
	24	1,2,3-三氯丙烷	0.5	
	25	氯乙烯	0.43	
	26	苯	4	
	27	氯苯	270	
	28	1,2-二氯苯	560	
	29	1,4-二氯苯	20	
	30	乙苯	28	
	31	苯乙烯	1290	
	32	甲苯	1200	
	33	间二甲苯+对二甲苯	570	
	34	邻二甲苯	640	
		半挥发,	性有机物	
	35	硝基苯	76	
	36	苯胺	260	
	37	2-氯酚	2256	
	38	苯并〔a〕蒽	15	
	39	苯并(a)芘	1.5	// // // // // // // // // // // // //
第二类用地	40	苯并〔b〕荧蒽	15	《土壤环境质量 建设用地土壤污染风险管控标准》
筛选值	41	苯并〔k〕荧蒽	151	(GB36600-2018)
	42	崫	1293	
	43	二苯并〔a, h〕蒽	1.5	
	44	茚并〔1, 2, 3-cd〕芘	15	
	45	萘	70	
	46	石油类	4500	
	1	镉	0.6	
	2	汞	3.4	
	3	砷	25	// / / / / / / / / / / / / / / / / / /
人 农用地	4	铅	170	《土壤环境质量 农用地土壤污染风险管控标准(试行)》
/八八万/巴	5	铬	250	(GB15618-2018)
	6	铜	100	(3515010 2010)
	7	镍	190	
	8	锌	300	

2.4.2.2 污染物排放标准

(1) 大气污染物排放标准

本工程主要大气污染源为采矿过程中,采矿扬尘、排土场产生的粉尘、运输过程中产生的粉尘、破碎工段产生的粉尘等。本工程颗粒物执行《大气污染物综合排放标准》(GB16297-1996)中的二级标准,有关标准限值见表 2.4-5。

污染物	最高允许排放浓度 (mg/m³)	最高 15m	允许排放 (kg/h) 20m	速率 30m	无组织排放监控点 浓度限值(mg/m³)
颗粒物	120	3.5	5.9	23	1.0

表 2.4-5 大气污染物浓度限值 单位: mg/m3

(2) 废水污染物排放标准

本工程采矿区生活污水采取地埋式一体化生活污水处理设施处理后满足《污水综合排放标准》(GB8978-1996)二级标准后,全部用于矿区绿化,综合利用;矿井涌水采用絮凝沉淀处理后,满足《污水综合排放标准》(GB8978-1996)表1第一类污染物最高允许排放浓度限值、《城市污水再生利用 城市杂用水水质》(GB/T18920-2020)中杂用水质标准后,全部用于地表和井下生产用水及降尘、地表绿化及降尘、选矿厂选矿用水等,不外排,标准值见表 2.4-6。

	- NG = 0.1 0 3 3 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1	жік <u>ш і ш</u> ў	, , ,
序号	项目	标准值	标准来源
1	总汞	0.05	
2	烷基汞	不得检出	
3	总镉	0.1	
4	总铬	1.5	
5	六价铬	0.5	《污水综合排放标》(3733-73133
6	总砷	0.5	准》(GB8978-1996)
7	—————————————————————————————————————	1.0	表1第一类污染物最
8	总镍	1.0	高允许排放浓度限值
9	苯并 (α) 芘	0.00003	
10	总铍	0.005	
11	总银	0.5	
1	pH(无量纲)	6-9	《污水综合排放标
2	BOD_5	30	准》(GB8978-1996)
3	COD	150	表 4 中的二级标准限

表 2.4-6 水污染物排放限值 单位: mg/L (pH 无量纲)

序号	项目	标准值	标准来源
4	SS	150	值
5	NH ₃ -N	25	
6	动植物油	15	
1	溶解性总固体	≤1000	
2	五日生化需氧量	≤10	《城市污水再生利用
3	氨氮	≤8	城市杂用水水质》
4	阴离子表面活性剂	≤0.5	(GB/T18920-2020)
5	溶解氧	≥2.0	中的城市绿化、道路
6	总氯	出厂≥1.0,管网末端≥0.2	清扫、消防、建筑施工四倍
7	大肠埃希氏菌 MPN/100mL	无	工限值

(3) 噪声排放标准

本工程建筑施工期厂界噪声执行《建筑施工场界环境噪声排放标准》 (GB12523-2011)的有关规定。具体见表 2.4-7。

表 2.4-7 建筑施工场界环境噪声排放标准 单位: dB(A)

_{ተትታ} ትሎ የሌ ፎቢ	噪声排放限值 dB(A)		
实施阶段 	昼间	夜间	
建筑施工	70	55	

运营期噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)表 1 的 2 类标准,见表 2.4-8。

表 2.4-8 工业企业厂界环境噪声排放标准 单位: dB(A)

	时段		
声环境功能区类别	昼间	夜间	
2 类	60	50	

(4) 固体废物

固废鉴别按照《危险废物鉴别标准-浸出毒性鉴别》(GB5085.3-2007)、《固体废物浸出毒性测定方法》(GB5086.1-1997)要求执行。

经检测,废石属于第 I 类一般工业固体废物,执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)的有关规定; 机修废机油属于危险废物,执行《危险废物贮存污染控制标准》(GB18597-2001)及 2013 年修改单(环保部公告(2013)第 36 号)的有关规定。

2.5 评价等级和评价范围

2.5.1 评价等级

2.5.1.1 大气环境影响评价等级

(1) 判定依据

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中的推荐模式 AERSCREEN,选择排土场扬尘作为主要污染物,计算粉尘的最大地面空气质量 浓度占标率 P_i (第 i 个污染物),及第 i 个污染物的地面空气质量浓度达标值 10% 时所对应的最远距离 $D_{10\%}$,其中 P_i 定义为:

$$P_i = C_i / C_{oi} \times 100\%$$

式中: Pi—第 i 个污染物的最大地面空气质量浓度占标率, %;

 C_{i} —采用估算模式计算出的第 i 个污染物的最大 1h 地面空气质量浓度, mg/m^3 ;

C_{oi}—第 i 个污染物的环境空气质量标准, μg/m³; 一般选用 GB3095 中 1 小时平均质量浓度的二级浓度限值。

本工程预测因子颗粒物(无组织)的标准值按导则要求选用日均值的 3 倍,取 0.90mg/m³。采用估算模式计算,大气环境影响评价工作等级判据见表 2.5-1。

评价工作等级	评价工作分级判据
一级	$P_{max} \ge 10\%$
二级	$1\% \le P_{\text{max}} < 10\%$
三级	P _{max} <1%

表 2.5-1 大气环境影响评价工作等级

(2) 采用数据及评价结果

根据项目初步工程分析,选取了排土场无组织扬尘进行预测,污染因子为 TSP。本评价根据其排放污染物源强,利用导则推荐的估算模式 AERSCREEN,对上述污染源进行预测,计算 P_{max} (P_{i} 值中最大者) 和 $D_{10\%}$ (占标率为 10%时所 对应的最远距离)。

表 2.5-2 估算模式参数表

参	取值	
城市/农村选项	城市/农村	农村

	人口数(城市选项时)	/
最高环境温度/℃		42
最低环均	竟温度/℃	-37
土地利用类型		草地
区域湿度条件		干燥气候
日本火卡山型	考虑地形	☑是 □否
是否考虑地形	地形数据分辨率/m	90m
	考虑岸线熏烟	□是
是否考虑岸线熏烟	岸线距离/km	/
	岸线方向/º	/

表 2.5-3 面源估算模式主要计算参数一览表

污染源名称		污染源 类型	评价标准 (mg/m³)	排放速率 (kg/h)	源的释放 高度(m)	不规则面源(m) 占地面积(万 m²)
污染源 1	北排土场	面源	0.9	2.1	10	105.6
污染源 2	南排土场	面源	0.9	2.4	10	118.4

表 2.5-4 估算模式计算结果表

序号	名称	最大落地浓度 (μg/m³)	最大浓度落地距离 (m)	P _{max} (%)
1	北排土场扬尘	0.06822	565	7.58
2	南排土场扬尘	0.07785	650	8.65

根据估算结果表明,本工程主要污染物粉尘最大占标率为: 8.65%,由污染物的最大占标率 1%<P_{max}<10%确定本工程大气环境评价等级为二级。

2.5.1.2 地表水评价等级

经现场踏勘及资料收集,萨瓦亚尔顿河流经IV号矿带各矿体上盘,本工程矿井涌水均用于地表及井下凿岩、降尘及选矿用水,不外排;本工程生活污水经地埋式一体化生活污水处理设施处理达标后综合利用,不外排,不与萨瓦亚尔顿河发生水力联系。根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中水污染影响型建设项目评价等级判定表,判定本工程排放方式为间接排放,地表水评价等级为三级 B。

表 2.5-5 水污染影响型建设项目评价等级判定

评价等级		判定依据	
		废水排放量 Q/(m³/d)	
	排放方式	水污染物当量数 W/(无量纲)	

一级	直接排放	Q≥20000 或 W≥600000
二级	直接排放	其他
三级 A	直接排放	Q<200 或 W<6000
三级 B	间接排放	_

- 注 1: 水污染物当量数等于该污染物的年排放量除以该污染物的污染当量值(见附录 A), 计算排放污染物的污染物当量数,应区分第一类水污染物和其他类水污染物,统计第一类污 染物当量数总和,然后与其他类污染物按照污染物当量数从大到小排序,取最大当量数作为 建设项目评价等级确定的依据。
- 注 2: 废水排放量按行业排放标准中规定的废水种类统计,没有相关行业排放标准要求的通过工程分析合理确定,应统计含热量大的冷却水的排放量,可不统计间接冷却水、循环水以及其他含污染物极少的清净下水的排放量。
- 注 3: 厂区存在堆积物(露天堆放的原料、燃料、废渣等以及垃圾堆放场)、降尘污染的,应将初期雨污水纳入废水排放量,相应的主要污染物纳入水污染当量计算。
- 注 4: 建设项目直接排放第一类污染物的,其评价等级为一级;建设项目直接排放的污染物为受纳水体超标因子的,评价等级不低于二级。
- 注 5: 直接排放受纳水体影响范围涉及饮用水水源保护区、饮用水取水口、重点保护与珍稀水生生物的栖息地、重要水生生物的自然产卵场等保护目标时,评价等级不低于二级。
- 注 6: 建设项目向河流、湖库排放温排水引起受纳水体水温变化超过水环境质量标准要求, 且评价范围有水温敏感目标时,评价等级为一级。
- 注 7: 建设项目利用海水作为调节温度介质,排水量 \geq 500 万 m^3/d ,评价等级为一级;排水量<500 万 m^3/d ,评价等级为二级。
- 注 8: 仅涉及清净下水排放的,如其排放水质满足受纳水体水环境质量标准要求的,评价等级为三级 A。
- 注 9: 依托现有排放口,且对外环境未新增排放污染物的直接排放建设项目,评价等级参照间接排放,定为三级 B。
- 注 10: 建设项目生产工艺中有废水产生,但作为回水利用,不排放到外环境的,按三级 B 评价。

2.5.1.3 地下水评价等级

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)中附录 A 地下水环境影响评价行业分类表,本工程属有色金属采选项目(含单独尾矿库),矿区不设置选矿厂及尾矿库,排土场为 I 类,其余为 III 类。根据调查,项目周边无集中式饮用水水源地及其保护区、准保护区,也无除集中式饮用水源以外的国家或地方政府设定的地下水环境相关的其他保护区,周边也无分散式饮用水水源地,无其他特殊地下水资源保护区以外的分布区等其他环境敏感区。因此,本项目地下水环境敏感程度为不敏感。依据《环境影响评价技术导则 地下水环境》

(HJ610-2016)中的地下水环境敏感程度分级表及建设项目评价工作等级分级表 (表 2.5-6、表 2.5-7),确定排土场地下水评价等级为二级。

表 2.5-6 地下水环境敏感程度分级

分级	项目场地的地下水环境敏感特征		
	集中式饮用水水源(包括已建成的在用、备用、应急水源地,在建和规划的饮用		
敏感	水水源)准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水		
	环境相关的其它保护区,如热水、矿泉水、温泉等特殊地下水资源保护区。		
	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水		
拉制或	水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保		
较敏感	护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(矿泉水、温泉		
	等)保护区以外的分布区等其它未列入上述敏感分级的环境敏感区。		
不敏感	上述地区之外的其它地区。		
注: "环境	注: "环境敏感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的		
环境敏感	环境敏感区。		

表 2.5-7 评价区地下水环境影响评价工作等级划分

项目类别 环境敏感程度	I 类项目	II 类项目	III 类项目
敏感	_	_	1.1
 较敏感		<u></u>	Ξ
不敏感	<u></u>	三	Ξ

2.5.1.4 声评价等级

根据《环境影响评价技术导则 声环境》(HJ2.4-2021)规定,建设项目所处的声环境功能区为 GB3096 规定的 1 类、2 类地区,或者建设项目建设前后评价范围内敏感目标噪声级增高量达 3~5dB(A),或受噪声影响人口数量增加较多时,按二级评价。

项目区位于《声环境质量标准》(GB3096)中2类功能区,周围2.5km范围内无居民区等声环境敏感目标,受影响人数变化不大。根据《环境影响评价技术导则 声环境》(HJ2.4-2021)中的评价等级确定原则,声环境评价等级为二级。

2.5.1.5 生态评价等级

本项目生态影响评价等级判定情况见表 2.5-17。

表 2.5-17 本项目生态影响评价等级判定表

判定依据	生态影响评价等级判定原则	本项目情况
	a、涉及国家公园、自然保护区、世界自然遗产、重 要生境时,评价等级为一级	不涉及
	b、涉及自然公园时,评价等级为二级	不涉及
		涉及,矿区东侧最近
	c、涉及生态保护红线时,评价等级不低于二级	距离天山南脉水源 涵养生态保护红线
		⊠ 0.5km
《环境影响评	d、根据 HJ2.3 判断属于水文要素影响型且地表水评价等级不低于二级的建设项目,生态影响评价等级不	本项目不属于水文 要素影响型项目,地
价技术导则	低于二级	表水评价等级为三
	IK J —-绞	级 B
生态环境》 (HJ19-2022)	e、根据 HJ610、HJ964 判断地下水水位或土壤影响 范围内分布有天然林、公益林、湿地等生态保护目标 的建设项目,生态影响评价等级不低于二级	不涉及
	f、当工程占地规模大于 20km ² 时(包括永久和临时	本项目为新建项目,
	占用陆域和水域),评价等级不低于二级;改扩建项	新增占地面积
	目的占地范围以新增占地(包括陆域和水域)确定	3.65km², 小于 20km²
	g、除本条 a、b、c、d、e、f 以外的情况,评价等级为三级	不属于
	h、当评价等级判定同时符合上述多种情况时,应采 用其中最高的评价等级	/

根据《环境影响评价技术导则 生态环境》(HJ19-2022)中"6.1.5 在矿山开 采可能导致矿区土地利用类型明显改变,或拦河闸坝建设可能明显改变水文情势 等情况下,评价级应上调一级"的评价等级判定要求,确定本项目生态影响评价 等级为一级。

2.5.1.6 土壤评价等级

(1) 项目类别

本工程属于《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018) 附录 A 土壤环境影响评价项目类别表中的"采矿业"中"金属矿、石油、页岩油开采"类,确定本工程区域土壤环境影响评价项目类别为 I 类,见表 2.5-9。

表 2.5-9 土壤环境影响评价项目类别

Ī	行业	项目类别		
	类别	I类	II类	III类

采矿	金属矿、石油、页岩	化学矿采选;石棉矿采选;煤矿采选、天然气开采、	
<u>米</u> 地	並属(v 、 石油 、 贝石	页岩气开采、砂岩气开采、煤气层开采(含净化、	其他
<u> 41/</u> .		液化)	

(2) 生态影响型

本工程采矿区属于生态影响型,根据《环境影响评价技术导则 土壤环境(试 行)》(HJ964-2018)中土壤环境生态影响型敏感程度分级规定和本工程所在区 域的地质资料,确定本工程所在区域的土壤环境敏感程度。矿区地处山区,土壤 环境质量现状监测数据 pH 值为 8.82, 8.5≤pH<9.0, 土壤含盐量 0.5g/kg, 判定 本工程的土壤环境敏感程度为较敏感。确定本工程土壤评价等级为二级,具体见 表 2.5-10、2.5-11。

敏感 判别依据 程度 盐化 酸化 碱化 建设项目所在地干燥度 2>2.5 且常年地下水位平均 敏感 埋深<1.5m的地势平坦区域;或土壤含盐量>4g/kg pH≤4.5 pH≥9.0 的区域 建设项目所在地干燥度>2.5 常年地下水位平均埋 深>1.5m 的,或 1.8<干燥度<2.5 且常年地下水位平 8.5≤pH< 均埋深<1.8m 的地势平坦区域;建设项目所在地干 较敏感 4.5 < pH≤5.5 9.0 燥度>2.5 或常年地下水位平均埋深<1.5m 的平原 区;或 2g/kg<土壤含盐量≤4g/kg 的区域 不敏感 其他 5.5 < pH < 8.5^a是指采用 E601 观测的多年平均水面蒸发量与降水量的比值,即蒸降比值。

土壤环境敏感程度分级表 表 2.5-10

表 2.5-11 生态影响型评价工作等级划分表

项目类别 评价工作等级 敏感程度	I类	II类	III 类
敏感	一级	二级	三级
较敏感	二级	二级	三级
不敏感	二级	三级	-

2.5.1.7 环境风险评价等级

根据《建设项目环境风险评价技术导则》(HJ169-2018),建设项目涉及的 物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照表 2.5-12 确定评价工作等级。风险潜势为 IV 及以上,进行一级评价;风险潜势为 III,进行二级评价;风险潜势为 II,进行三级评价;风险潜势为 I,可开展简单分析。评价工作等级划分见表 2.5-12。

表 2.5-12 评价工作等级划分

环境风险潜势	IV, IV ⁺	III	П	I
评价工作等级	_	<u> </u>	111	简单分析 a
a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险				
防范措施等方面给出定性的说明。				

(1) 环境风险潜势划分

建设项目环境风险潜势划分为 I、II、III、IV/IV+级。根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,按照表 2.5-13 确定环境风险潜势。

危险物质及工艺系统危险性(P) 环境敏感程度(E) 极高危害(P1) 高度危害(P2) 中度危害(P3) 轻度危害(P4) 环境高度敏感区(E1) IV^+ IV IIIIII 环境中度敏感区(E2) IV IIIII III环境低度敏感区(E3) Ι III III II 注: IV+为极高环境风险

表 2.5-13 建设项目环境风险潜势划分

(2) P 的分级确定

分析建设项目生产、使用、储存过程中涉及的有毒有害、易燃易爆物质,根据 HJ169-2018 附录 B 确定危险物质的临界量。定量分析危险物质数量与临界量的比值(Q)和所属行业及生产工艺特点(M),按照 HJ169-2018 附录 C 对危险物质及工艺系统危险性(P)等级进行判断,如表 2.5-14 所示,分别以 P1、P2、P3、P4表示。

表 2.5-14 危险物质及工艺系统危险性等级判断 (P)

危险物质数量与	行业及生产工艺(M)			
临界量比值(Q)	M1	M2	M3	M4
Q≥100	P1	P1	P2	Р3
10≤Q<100	P1	P2	Р3	P4
1≤Q<10	P2	Р3	P4	P4

危险物质数量与临界量的比值(Q):

本工程主要涉及的可燃、易燃和爆炸危险性物质为炸药、雷管和柴油,炸药最大储存量为35t,危险物质以硝酸铵计,爆破工程使用炸药及雷管,爆破器材库委托专业的民爆公司进行管理及维护。油库占地面积为400m²,安装2个200m³立式拱顶油罐,矿区另设2套50m³橇装式加油装置。柴油(密度:0.85)最大储存量为425t,柴油设置柴油罐进行存储危废暂存间贮存废油8t,根据计算Q值等于0.8732,小于1。根据判定环境风险潜势为I类,根据评价导则要求,本次评价参照标准进行风险识别和对事故风险进行简要分析,重点提出防范、减缓和应急措施,对事故影响范围和影响程度进行分析。本工程危险物质数量与临界量比值见下表。

表 2.5-15 本工程危险物质数量与临界量的比值

设施	物质名称	临界量/t	储存量/t	Q
柴油罐、橇装	柴油	2500	425	0.17
式加油装置	采 佃	2500	425	0.17
爆破器材库	炸药(硝酸铵)	50	35	0.7
危废暂存间	废机油	2500	8	0.0032

因此,本工程Q值为0.8732<1,则判定本工程环境风险潜势为I。

(3) 评价工作等级判断

综上可知,本工程环境风险潜势为I,进行简单分析。

2.5.2 评价范围

根据评价工作等级及当地气象条件、自然环境状况确定各环境要素评价范围如下:

(1) 大气环境影响评价范围

本工程大气环境影响评价等级为二级,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)规定,其大气环境影响评价范围为以矿区为中心区域,边长为 5km 的矩形。

(2) 地表水评价范围

应满足其依托污水处理设施环境可行性分析的要求:

涉及地表水风险的,应覆盖环境风险影响范围所及的水环境保护目标水域。

(3) 地下水环境影响评价范围

本矿区位于天山南坡西段的高寒中高山区水文地质单元,矿区山岭呈近东北~西南走向,矿区地下水流场大致为东北~西南方向,因此,地下水评价范围为南至萨瓦亚尔顿河,北至矿区外 1km,东至 I 号矿区东侧外 383m 的山脊线,西至 IV 号矿区西侧外 377m 的山脊线,评价范围共计 12.1km²。

(4) 声环境影响评价范围

由于本工程 2.5km 范围内无声环境敏感点,因此本工程声环境评价范围为项目区边界外 200m。

(5) 生态环境影响评价范围

根据《环境影响评价技术导则 生态影响》(HJ19-2022)的评价范围确定原则:矿山开采项目评价范围应涵盖开采区及其影响范围、各类场地及运输系统占地以及施工临时占地范围等,本项目生态影响评价范围为开采区及预测塌陷区范围、矿区各场地及运输系统占地以及施工临时占地范围。

(6) 土壤环境影响评价范围

评价范围为矿区及矿区边界外 2km 的范围内。

(7) 环境风险评价范围

本工程环境风险评价只进行简单分析,根据《建设项目环境风险评价技术导则》(HJ169-2018),不设环境风险评价范围。

本项目各环境要素评价等级及评价范围情况汇总见表 2.5-16。

环境要素	评价等级	评价范围	
环境空气	二级	边长 5km 的矩形范围内	
地表水	三级 B	地埋式一体化污水处理设备环境可行性分析,	以及覆盖环境

表 2.5-16 本项目各要素环境影响评价范围汇总表

环境要素	评价等级	评价范围	
		风险影响范围所及的萨瓦亚尔顿河,其中萨瓦亚尔顿河评价	
		河段长 7.16km	
		南至萨瓦亚尔顿河,北至矿区外 1km,东至 I 号矿区东侧外	
地下水	二级	383m 的山脊线, 西至 IV 号矿区西侧外 377m 的山脊线, 评	
		价范围约 12.1km ²	
声环境	二级	矿山边界外 200m	
土壤环境	二级	矿区及矿区边界外 2km 的范围内	
<i>4</i> - ★	LT.	开采区及预测塌陷区范围、矿区各场地及运输系统占地以及	
生态	一级	施工临时占地范围	
环境风险	简单分析		

项目评价范围图见图 2.5-1。

2.6 评价重点

根据本工程污染物排放性质及其排放方式、排放特点,结合矿区周围环境特征,确定本次评价的重点是矿区生态环境现状调查;预测采矿区地表塌陷、采矿扬尘等对天山南脉水源涵养生态保护红线区的影响;矿井涌水、排土场淋溶水对地表水萨瓦亚尔顿河以及地下水水质的影响,以及提出科学、可行的环保措施,同时关注影响范围内公众对本工程的意见和建议。

2.7 主要环境保护目标和环境敏感目标

2.7.1 主要环境保护目标

- (1) 大气环境:保护评价区环境空气,保证不因本工程而降低区域环境空气质量现状级别—《环境空气质量标准》(GB3095-2012)及2018年修改单二级标准。应确保评价区域内的大气环境质量不受本工程排放大气污染物的明显影响。
- (2) 声环境:项目评价范围内无声环境保护目标,控制厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准,避免对厂址区域造成噪声污染。确保本工程建成后区域声环境依旧满足《声环境质量标准》(GB3096-2008)中的2类区要求。
 - (3) 水环境:保护萨瓦亚尔顿河水质满足《地表水环境质量标准》

(GB3838-2002) I 类标准;保护矿区上游及下游区域地下水水质,保证不因本工程而降低区域地下水环境质量现状级别《地下水质量标准》(GB/T14848-2017) III类标准。

- (4) 环境风险:降低环境风险发生概率,保证环境风险发生时能够得到及时控制,保护办公生活区人员。
- (5) 生态环境:保护项目区及周边天山南脉水源涵养生态保护红线区生态环境,将生态环境影响降低到最小。
- (6) 土壤环境:本工程占地范围内属于《城市用地分类与规划建设用地标准》(GB50137-2011)中规定的二类工业用地(M2),因此土壤环境质量执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的第二类筛选值标准;本工程采矿工业场地占地范围外为有部分草地,土壤环境质量执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)中的筛选值标准。

2.7.2 环境敏感目标分布

矿区邻近天山南脉水源涵养生态保护红线区,矿区附近无其他国家及省级确定的风景名胜区、历史遗迹等保护区,也无重点保护生态品种及濒危生物物种,文物古迹等,项目区 5km 范围内无居民区。环境敏感目标分布见表 2.7-1 及图 2.7-1。

表 2.7-1 本上程的 外現 歌 目 标				
环境要素	敏感点	相对位置	保护目标	
大气环境	天山南脉水源涵养 生态保护红线区	邻近矿区	《环境空气质量标准》 (GB3095-2012)中的二级标 准	
地表水环境	萨瓦亚尔顿河	流经IV号矿体中部	《地表水环境质量标准》 (GB3838-2002)中的 I 类水体 水质标准	
地下水环境	潜水含水层、具有供水意义的含水层;泉水出露点	评价区域	《地下水质量标准》 (GB/T14848-2017)Ⅲ类	
声环境	开采区及采矿工业场地、排土场外 1m		《声环境质量标准》 (GB3096-2008)中的2类	

表 2.7-1 本工程的环境敏感目标

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

环境要素	敏感点	相对位置	保护目标
<i>Ͱ</i> Ͱ- <i>⋆</i> - <i>ττ</i> <u>ι</u> ·汶	 扰动范围的土壤、植被、野生动物等 		植被恢复、控制水土流失及地 表塌陷、保护野生动物
生态环境	天山南脉水源涵养生态保护红线区		确保生态功能不降低、面积不 减少、性质不改变
土壤环境	评价范围内草地		《土壤环境质量 农用地土壤 污染风险管控标准(试行)》 (GB15618-2018)中的筛选值 标准
	天山南脉水源涵养 生态保护红线区	邻近矿区,东侧最近 500m	降低环境风险发生概率,保证 环境风险发生时能够得到及时
环境风险	萨瓦亚尔顿河 流经1V号矿体中部		控制,保护矿区工作人员、水体及红线区域生态环境

2.8 评价时段

本工程评价时段考虑施工期、运营期和闭矿期。项目施工期为 2 年,为 2023 年 3 月~2025 年 3 月,矿区服务年限为 25 年,运营期为项目建成投产后;闭矿期为开采结束后 1~2 年。

3 建设项目工程分析

3.1 矿区现有工程概况

3.1.1 矿山勘探发展沿革

1993年前矿区主要为踏勘找矿,自 1993年起新疆地矿局第二地质大队四分队进行二次资料开发,在萨瓦亚尔顿地区进行异常查证工作,发现 I 号矿化带,该区找金工作由此取得突破性进展后,进入矿区开展以金矿为主的专项勘查工作。勘查工作大致分为三个阶段:

第一阶段(1994~1999年):由新疆地矿局第二地质大队承担了普查工作。 1994年,由新疆地矿局第二地质大队六分队承担了萨瓦亚尔顿金矿普查评价工作,通过1:1万土壤地球化学测量,在区内发现了包括I、IV号矿化带在内的22条矿化蚀变带,其中IV号矿化带规模最大,本区找金上有了重大突破。

1995年该项目列为部控局重点项目,经普查评价工作,初步查明了矿床形成的地质条件、控矿因素;初步查明了IV号矿化带及其矿体地质特征;大致查明IV号矿化带矿体的矿石物质组份、结构构造。根据新地报审字[1999]31号,批准表内矿 D+E 级总矿石量 1732881t,Au 金属量 7636kg,Au 平均品位 4.41g/t。表外矿 D+E 级总矿石量 17750130t,Au 金属量 29969kg,Au 平均品位 1.67g/t。

第二阶段(2004~2007年):由新疆玛嘉斯特矿业有限公司承担了勘查工作(部分地段可达详查),由新疆地矿局第二地质大队协助。

2004~2007年,由新疆玛嘉斯特矿业有限公司在萨瓦亚尔顿金矿区再次进行勘查工作,主要对IV号矿化带利用槽探、钻探等工程进行了地表以下 100~300m 的控制,并估算了 IV 号矿化带的资源量。

第三阶段(2010~2011年):由新疆同源矿业有限公司出资,新疆地矿局第二地质大队承担了普详查工作。

此次普详查中在基本查明IV号矿带主要矿段的基础上,侧重于深部找矿。由于深部局部主矿体厚度大,品位高,在找矿上有较大突破后,同源公司的决定由详查直接转入勘探,当时未提交详查报告。直到2014年初,同源公司才决定提交详查报告,于2014年5月提交了包括2012~2013年勘探成果的《新疆乌恰县

萨瓦亚尔顿矿区金矿详查报告》,该报告在新疆维吾尔自治区矿产资源储量评审中心组织评审,以新国土资储备字[2014]094号矿产资源储量评审备案证明,保有控制和推断矿石量 79146294t,Au 金属量 126099kg,Au 平均品位 1.59g/t。

勘探阶段(2012~2014年),由新疆同源矿业有限公司出资,新疆地矿局 第二地质大队承担了勘探工作。

勘探工作于 2012 年 1 月开始,于 2014 年 10 月结束野外工作,于 2015 年 8 月完成报告初稿,完成了同源公司下达的任务,勘探工作周期历时三年八个月。勘探报告编写中,利用了 1994~1998 年普查时的坑探、钻孔和部分槽探工程编录资料和成果;利用了 2004~2007 年勘查时的部分资料;利用了 2010~2011年详查的相关资料。

2022年8月新疆紫金黄金有限公司收购萨瓦亚尔顿金矿。

3.1.2 环保手续履行情况

2013年新疆同源矿业有限公司委托新疆天地源环保科技发展有限公司编制完成了《新疆同源矿业有限公司 450吨/日黄金矿石采选技改项目环境影响报告书》,2013年6月13日,原新疆维吾尔自治区环境保护厅出具了《关于新疆同源矿业有限公司 450吨/日黄金矿石采选技改项目环境影响报告书的批复》(文号:新环评价函(2013)481号)。新疆同源矿业有限公司一直未开采。

现有工程环保手续履行情况一览表见表 3.1-1。

序 号	项目名称	环评手续	竣工环境保护验收	生产情况
	新疆同源 矿业有限	2013年6月13日取得《关于新疆同源矿业有		
1	公司 450	限公司 450 吨/日黄金矿	一直未建设	未开采
	吨/日黄金 矿石采选	石采选技改项目环境影 响报告书的批复》(新		
	技改项目	环评价函(2013)481号)		

表 3.1-1 现有工程环保手续履行情况一览表

3.1.3 早期工程环境影响回顾性调查与评价

3.1.3.1 早期工程的概况

新疆乌恰县萨瓦亚尔顿金矿最早为新疆地矿局第二地质大队投资建设的矿

山。1995年以前曾在本区进行地质工作,并发现该矿成矿带,1995年—2002年,第二地质大队对萨瓦亚尔顿金矿IV号矿带IV2号矿体进行了工业试验及矿山开发工作,氧化矿的开采IV号矿带IV2号矿体 0 勘探线-39 勘探线间均有不同程度的开采,前期开采根据地形条件,只开采出露地表的深 10m 范围内的矿体,进行了剥离,挖掘机作业形成的采场深浅不一。在地表形成的山坡露天采场长约 620m,宽约 50m-120m,占地面积约为 50000m²,采场底部依山体东高西低,靠山坡方向采场边坡高度 8-10m,坡面角约 70°。1995~2002年间共开采 333+334 矿石量64.6 万 t,金属量 1418.91kg。由于自然条件及缺乏总体采矿设计,回采率不到65%。

项目未设置废石场,废石量约 280 万 t,全部用于铺设采场的道路,无废石堆放。

2003 至今,矿山没有进行开采。期间新疆马嘉斯矿业有限公司申请了萨瓦亚尔顿金矿采矿证,但未进行环评手续,此采矿证于 2010 年转让于新疆同源矿业有限公司,经过勘察,氧化矿体直接出露于地表,且氧化矿深度一般均在 30m以上,因此矿山一直沿用露天开采方式。采矿规模为 9 万 t/a; 开采标高: 3530m至 3400m 标高: 矿区面积: 1.7094km²。

3.1.3.2 早期工程建设规模及工艺

新疆地矿局第二地质大队的采矿规模为 9 万 t/a,开采方式为露天开采。在地表形成的山坡露天采场长约 620m,宽约 50m-120m,占地面积约为 50000m²。工业广场已基本废弃,只有爆破器材库(库房)保存基本完整。

采矿方法采用水平分层(分层高度 10m),分层内采用组合小台阶一次性推进采矿法。采剥工艺采用浅孔凿岩,火雷管+导爆管+岩石硝铵炸药爆破,采场挖掘机和自卸汽车运输,部分矿体厚度小的地段,采用人工装运。

(1) 供水

矿山生产生活用水取自萨瓦亚尔顿河。

(2) 排水

生产废水主要是生活污水。生活污水处理采用化粪池,处理后排放至厂区附近的废水储存池冬季储存,其他季节做为矿区绿化。

(3) 供电

矿山采用露天开采方式,采矿机械均为柴油动力。矿山用电设备主要为照明 用和部分小型维修设备用电。

(4) 供热

露天开采采场不设供暖设施,生活区采用火炉取暖。

(5) 爆破器材库

矿山爆破材料库位于矿区生活区西南部、直线距离 2.4km 左右,占地面积约 120m²,部分围墙损坏。

(6) 道路

已建成矿区至选矿厂的简易道路,长约 11km,路基宽 2.5m,现仍可使用。

(7) 生活设施

矿山生活区集中建设在露天采场南部、直线距离约 600m 处,临近萨瓦亚尔顿河,位于进矿公路旁边。生活区主要为工人宿舍、办公室、会议室、食堂等,均为砖混结构。

3.1.3.3 早期工程污染源调查

由于矿山已停采 19 年,原有工程所产生的大气污染,水污染,固体废物,噪声污染对周围环境影响已经不复存在,生态地貌基本恢复为原始状态,在此只做简要说明。

(1) 水污染物

生活污水主要为洗漱、食堂废水,污染物主要有 SS、CODcr、BOD、NH₃-N、动植物油,全部用于泼洒厂区及绿化,现状化粪池已废弃,无废(污)水排放。

(2) 大气污染物

对大气环境的影响主要是粉尘污染,主要是工作面爆破、凿岩、装运作业的 废气排放,主要污染物为粉尘、SO₂、NOx,现状无采矿大气污染物排放。

(3) 噪声污染

噪声污染源为凿岩机、空压机、破碎机以及爆破,源强为 70-116dB,现状 无工业噪声排放。

(4) 固体废物

采矿场采矿废石约 40.32 万 t, 用于道路基础铺垫, 现状无堆放。

采矿场无生活垃圾填埋点。

3.1.3.4 存在的主要环境问题

根据本次环评的现场调查以及监测可知,本矿目前存在的主要环保问题如下:

- (1) 露天采场: 在地表形成的山坡露天采场长约 620m, 宽约 50m-120m, 采场底部依山体东高西低,靠山坡方向采场边坡高度 8-10m,坡面角约 70°,未进行绿化复垦工作。
- (2) 道路: 矿区的道路(约 11km)已建成,但未进行边坡护理,造成矿区局部水土流失。
 - (3) 生活垃圾: 生活垃圾随意堆放, 无填埋场地。
- (4)生活污水:生活污水采用化粪池处理后排放,其排放浓度不能达到《污水综合排放标准》二级标准,化粪池已废弃。

3.1.3.5 以新带老措施

- (1) 露天采场:本次工程露天采场在原采场及周边矿体进行采矿活动,故 在本矿闭矿期对其统一进行复垦绿化。
 - (2) 道路:对已有道路未进行边坡护理进行边坡护理。
- (3)生活垃圾:在本次工程中对生活垃圾集中收集,并在指定的垃圾填埋场填埋处理。
- (4) 生活污水: 矿区生活污水均采用地埋式一体化污水处理设备处理, 处理达标后用于绿化及抑尘,可将现有化粪池清除并复垦。
- (5) 本项目所有工程设施为新建,老旧基础设施应拆除,并恢复原貌,位 于拟开采矿坑范围内的设施只进行拆除。

3.2 拟建工程概况

3.2.1 项目基本情况

项目名称:新疆萨瓦亚尔顿金矿采矿工程

建设单位:新疆紫金黄金有限公司

建设性质:新建

建设地点:矿区距乌恰县西北约 110km,矿区至乌鲁克恰提乡有 45km 简易公路相接,萨瓦亚尔顿河流经IV号矿带各矿体上盘,东经 74°18′5.6″-74°18′59.05″,北纬 40°4′21.12″-40°6′5.68″。项目所在区域地理位置见图 3.2-1,项目区域位置见

图 3.2-2。

建设规模:本项目建设规模为年产 180×104 金矿石。

3.2.1.1 工程组成

本项目主要开采对象为IV号矿体和 I 号矿体,新增建设内容包括:露采坑、 采矿工业场地、排土场、表土堆场、办公生活区、爆破器材库及其他辅助工业场 地组成。

本工程组成主要包括:主体工程、辅助工程、公用工程、运输工程、环保工程等,见表 3.2-1。

# 2 2 1	项目组成一!	火士
表 3.2-1	$M \cap M \cap M$	アスマ

	工程类	别	工程内容	备注
			设计两个露采场,分别为Ⅳ号露采场及Ⅰ号露采场,其中Ⅳ号	
			露采场位于矿区的西侧, Ⅰ号露采场位于矿区的东侧。Ⅳ号矿带	
			共含两个出入沟,分别布置于露采场南北两侧,南出入沟标高	
	露天	采场	3476.00m, 北出入沟标高 3548.00m; I 号露采场出入沟布置于	新建
			露采场西侧,标高 3790.00m。IV 号露采场自东北向西南全长约	
			2500m、自西向东宽约 900m; I 号露采场自东北向西南全长约	
			500m、自西向东宽约 240m;露采场总占地面积约 127×10 ⁴ m ² 。	
			IV号矿带地采南区: 自上而下划分为13个中段,分别为3572m、	新建
			3512m, 3452m, 3392m, 3332m, 3272m, 3212m, 3152m, 3092m,	
			3032m、2972m、2912m、2852m,首采中段为3572m中段; IV	
主		主要	号矿带地采北区: 自上而下划分为11个中段,分别为3392m、	
体		工女 井筒	3332m、3272m、3212m、3152m、3092m、3032m、2972m、2912m、	新建
工			2852m、2792m, 首采中段为3392m。 I 号矿带地采区: 自上而	
程	井		下划分为7个中段,分别为3752m、3690m、3630m、3570m、	
	下一		3510m、3450m、3390m,首采中段为3752m。	
	开		新建采区矿石溜井振动放矿硐室、采区岩石溜井振动放矿硐室	
	采	硐室	电机车、矿车修理硐室、中央变电硐室、采区变电硐室、牵引	÷r →+ı
	工程		变电硐室、1#通风机起动室、2#通风机起动室、平硐配电硐室、	新建
			风机硐室、平硐预热硐室、平硐预热配电硐室等。	
	开拓		Ⅳ号矿带采用平硐+胶带平巷+斜坡道联合开拓方案。 Ⅰ号矿带	新建
		运输	井下采用平硐+盲斜坡道开拓方案。	初廷
		矿井	采用中央进风两翼对角式通风系统,通风方式为机械抽出式。	新建
		通风	通风线路为:风流由平硐进入,经盲罐笼井以及斜坡道中段运	別廷

	工程类别	工程内容	备注
		输巷道进入各通风天井,清洗采场后,污风经回风天井回风到各矿体上部回风平巷,经过东、西盲风井后,再经过回风平硐口风机抽出地表。	
	排水系统	经水仓沉淀后用于开采降尘及井道硐口、排土场、运输道路洒 水。	新建
排土场		排土场服务于露采场,为了缩短废石的运输距离,采取就近排土的方式,此次共设计两个排土场,其中北部排土场布置于IV号露采场北出入沟东北侧约400m的山谷,堆存标高在3470.00~3600.00m之间,容积1865.3×10 ⁴ m³,占地面积55×10 ⁴ m²,主要用于堆存IV号露采场部分废石及I露采、地采所有废石;南部排土场布置于IV号矿带露采场南出入沟南侧约900m的山谷处,堆存标高在3310.00~3480.00m之间,容积9693.7×10 ⁴ m³,占地面积120×10 ⁴ m²,主要用于堆存IV号露采场部分废石及IV地采废石。排土场总容积约11559×10 ⁴ m³,总占地面积约175×10 ⁴ m²。	新建
运工程	表土堆场	共设计 2 个表土堆场。1 #表土堆场布置于北部排土场西南侧约 160m 处,用于堆存北部排土场及两个露采场的表土,占地面积约 5×10 4 m²,容积 61×10 4 m³; 2 #表土堆场布置于南部排土场西南侧约 300m 处,用于堆存南部排土场的表土,占地面积约 5×10 4 m²,容积 40×10 4 m³ m²。	新建
	矿山道路	外部运输公路利用矿山原有公路,矿山公路为单车道,三级路面,路面宽度 6.5m,平均纵坡≤6.5%,最小转弯半径 15m,车辆交会处加宽 3.5m,长度>20m,采用 20t 自卸汽车运输,可满足扩建工程生产需要。	新建
	油库	油库占地面积为 400m², 安装 2 个 200m³ 立式拱顶油罐。下分设加油站,在IV矿带露天坑出入沟附近设置 1 个采矿加油站,配 2 套 50m³ 橇装式加油装置。	新建
	运输管道 矿区工业场地与选矿厂设有运输管线,用于运输矿井涌水,作 为选矿用水,管道全长约 5.5km。		
辅助	采矿工业场 地	采矿工业场地主要围绕各井口及各平硐口布置。采矿工业场地包括副井场地、斜坡道口场地、回风井场地、各平硐口场地等。 采矿工业场地占地面积约 3.5×10 ⁴ m ² 。	新建
工 程	其他辅助工 业场地	包括配电设施、机修车间、综合仓库、地磅房、汽修车间等。	新建
	办公生活区	办公生活区布置于依托的选矿工业场地西北侧,包括一栋办公	新建

	工程类别	工程内容	备注	
		楼、两栋宿舍楼、一栋食堂及值班室。办公生活区占地面积3		
		$ imes 10^4 \mathrm{m}^2$.		
		拟从北部排土场坡脚, 亦即露采场北部界限外选择合适位		
		置,布置挡水坝和隧洞将萨瓦亚尔顿河截流,并进行河流改道,		
		避开露采场和南部排土场引至下游天然河道排走。		
		改道路线分为两段,第一段隧洞长1210m,将水由1#挡水坝		
		前引至南部3448m沟口。该段隧洞进口标高3470m,出口标高		
	河流水光	3448m,底板平均坡度1.8%。采用城门洞型,净断面尺寸	立に 7書	
	河流改道 	2.2×2.2m。第二段隧洞长1700m,从南部排土场上游沟口建2#拦	新建	
		水坝,通过隧洞将由3448m标高沟口排出再自然汇流至此处的水		
		继续引排至下游。该段隧洞进口标高3370m,出口标高3250m,		
		底板平均坡度7.0%。采用城门洞型,净断面尺寸2.0×2.0m。		
		挡水坝均为砼砌石坝,坝高约 8m,坝顶宽 2m,上游铅直,下		
		游坡比1: 0.7。		
		矿区萨瓦亚尔顿河主要接受冰雪融水、大气降水形成地表水体,		
		河水清澈透明、无色、无味、无嗅,可以作为饮用水,萨瓦亚		
	给水工程	尔顿河可作为水源地,能够满足部分生产生活用水需求。新建	↔r° z±ь	
		新建IV矿带 600m ³ 采厂生产新水及消防水池 1 座,由涌水泵房	新建	
		内吸水池自流引入。生产期第6年建设I矿带300m3采矿生产新		
公		水及消防水池 1 座,由涌水取水泵房内水泵供给。		
用	サルブ和	矿井涌水排入沉淀池进行沉淀后用于采矿生产用水、选矿用水。	新建	
工	排水工程	生活污水排放至至矿山污水处理站处理后综合利用。	新建	
程	44 n空	矿山平硐及井下采暖采用组合式空调机组供暖。生活区供热依	立じ 7事	
	供暖	托选矿厂供热锅炉,供暖设施能够满足供暖需要。	新建	
		35kV 高压架空进线设计为两路,分别引自乌鲁克恰提乡现有		
	/# -	110kV变电站的不同 35kV 母线段,线路长度约为 2×45km; 35kV	立に 7書	
	供电 	配电装置户内布置,单母线分段接线;站内设主变压器3台,	新建	
		容量均为 25000kVA, 室外布置。		
		无组织:采用湿式凿岩,有效控制采掘扬尘;排土场采用喷淋		
	废气	降尘、堆体遮盖、洒水车降尘等措施。	新建	
7.7*		有组织:破碎废气采用全封闭喷雾降尘,并配套建设除尘系统。		
环		新建配套矿井涌水沉淀池,矿井涌水排入沉淀池进行沉淀后用		
保工	废水	于采矿生产用水、选矿用水等;生活污水排放至地埋式一体化	新建	
I		污水处理设施处理后综合利用。		
程	噪声	采用低噪声设备,对噪声源设置减震装置和消声器。	新建	
	111 bb	废石均堆至排土场,用于回填采区。	新建	
	固废	生活垃圾集中收集至配套选矿厂,定期清运。	新建	

工程类别	工程内容	备注
	设备维修保养产生的废机油经收集后暂存于危险废物暂存间,	立に7 事
	委托有危废处置资质单位进行处置。	新建
环境风险 应急措施	矿区内设置消防系统,以满足消防用水及地表及井下降尘用水。	新建

3.2.1.2 产品方案

产品方案: 采矿产品方案为含金矿石。采出所有矿石均送到矿山配套选矿厂。 IV 号矿体露天采场最终境界底部标高 3248m, I 号矿体露天采场最终境界底部标高 3752m。前期 IV 号、 I 号露天开采境界内采出矿石总量为 2107.95 万吨,矿石平均品位 Au1.31g/t。服务年限 9 年。

井下主要开采对象为露天境界外标高 3600~2820m 之间的IV号矿带和标高 3752~3390m 之间的 I 号矿带。在平面上将井下划分为 3 个采区,分别是IV号矿带地采南区、IV号矿带地采北区和 I 号矿带地采区,地采合计利用资源量 3746.8 万 t,Au 金属量 51.98t,Au 平均品位 1.58g/t。服务年限 18 年。

3.2.1.3 各矿体特征

矿床产于浅变质黑色含炭碎屑岩中,受断裂控制特征明显,矿体规模大,矿石矿物种类复杂、成矿具有浅成中-低温热液活动特点,与蚀变关系密切,成矿过程复杂,属浅变质中低温渗滤热液型的金矿床。

萨瓦亚尔顿金矿床产于韧性挤压剪切带中,矿体主要分布于志留统塔尔特库里组第一岩性段(S3t1)和下泥盆统萨瓦亚尔顿组(D1sw)且受后期北东向张扭性断裂控制,含矿岩性主要为浅变质含炭碎屑岩。矿区内共发现了 21 条矿化带,其中IV号矿化带规模最大,其次为 I 号矿化带(见图 3.2-3)。共圈出 14 个工业矿体,其中IV号矿化带圈出 11 个矿体、 I 号矿化带圈出 2 个矿体、 V号矿化带圈出 1 个矿体,主矿体 1 条,次要矿体 2 条,其它为小矿体。另圈出了 28个低品位矿,其中IV号矿化带圈出 11 个、I 号矿化带圈出 10 个、II 号矿化带圈出 4 个矿体、XI号矿化带圈出 2 个矿体、V号矿化带圈出 1 个矿体,低品位矿依附于工业矿体上下盘。

图 3.2-3 萨瓦亚尔顿矿区矿化带分布简图

矿区主要工业矿体特征如下:

(1) IV-1-1 号矿体

IV-1-1号矿体为矿床内规模最大矿体,矿体严格受主断裂破碎带控制,赋矿岩性以薄层状含炭绢云千枚岩与薄层状变细砂岩互层为主、局部为含炭绢云千枚岩和中厚层状变质砂岩、碎裂岩和角砾岩。矿体分布在 107~148#勘探线间,控制总长度 3660m,控制最大斜深 932.77m,最大垂深 893.55m(标高 2766.86)(南矿段),控制平均垂深 548m,形态较简单(局部偏复杂),呈似板状体,沿走向、倾向均具有膨大狭缩的波状起伏,在15~51#勘探线间(标高在 3458~3125m)有夹石;在 27~43#勘探线间标高 3100m 附近形成"三角形"的天窗。矿体产状较稳定,总体走向北东,倾向北西,倾角一般在 42~88°之间,平均倾角 72.14°,局部为直立或反倾。矿体平均厚度 6.22m,厚度变化系数 104.25%,属厚度变化较稳定矿体;平均品位 2.56g/t,矿体品位变化系数 31.24%,属有用组份变化均匀矿体。矿体由蚀变岩型矿石组成,矿石蚀变强品位高,蚀变弱品位低。

矿体在 48~52#勘探线间被低品位矿隔断,分为南北两段。

北段 (44~107#勘探线) 由 230 个工程控制,长 2410m,最大斜深 825.88m,最大垂深 769.61m (标高 2696.08m),平均控制垂深 465.63m;矿体总体走向北东,倾向为 297~308°,倾角为 41~89°之间,平均倾角 72.22°,局部为直立或反倾。矿体单工程最大见矿厚度 43.40m(ZK1111),最小厚度 0.31m(ZK3612),平均厚度 6.82m。厚度变化系数 98.86%,属厚度变化较稳定矿体。单工程最高品位 6.89g/t(ZK1903),最低品位 1.08g/t(TC0401),平均品位 2.56g/t,矿体品位变化系数 30.17%,属有用组份变化均匀矿体。

南段(60~132#勘探线间)由58个工程控制,长1250m,最大斜深932.77m,最大垂深893.55m(标高2766.86),平均控制垂深659.13m。矿体总体走向北东,倾向为294~303°之间,倾角为55~87.5°之间,平均倾角72°。矿体单工程最大见矿厚度15.24m(TC76),最小厚度0.45m(ZK10801),平均厚度3.41m,厚度变化系数115.98%,属厚度变化较稳定矿体。单工程最高品位5.34g/t

(ZK10801),最低品位 0.86g/t(TC60),平均品位 2.51g/t,矿体单工程品位变化系数 34.09%,属有用组份变化均匀矿体。

(2) IV-2-1 号矿体

次要矿体,产于IV-1-1号矿体上盘。由 57个工程控制,长度 480m,最大斜深 379m。呈脉状,沿走向、倾向具膨缩、尖灭再现特点。走向北东,倾向 296~308°,倾角 55~86°,平均倾角 70°。厚度 $11.73\sim0.3$ m,平均 3.83m;单工程品位 $7.91\sim0.95$ g/t,平均 2.86g/t。

(3) I₁-1-1 号矿体

次要矿体,产于 I 号矿化带内,由 20个工程控制,长度 444m,最大斜深 392m 呈薄板状、脉状及透镜状。沿走向、倾向具膨大狭缩现象。走向北东,倾向 261~313°,倾角 54~88°,平均倾角 79°。厚度 $15.6\sim0.55$ m,平均厚度 3.05m;单工程品位 $4.29\sim1.26$ g/t,平均品位 2.28g/t。

3.2.1.4 矿区范围

本项目包括 1 宗探矿权和 1 宗采矿权(采矿权在探矿权范围内)。探矿权首次设立时间为 1999 年 11 月,经多次法人变更。探矿权有限期为 2021 年 6 月 15 日至 2023 年 6 月 15 日,面积 10.93km²。最终确定的矿区范围拐点坐标见表 3.2-4。

序号 X坐标 Y坐标 1 2 3 4 5 6 9 10 11 12 13 14 15

表 3.2-4 矿区范围拐点坐标表

序号	X坐标	Y 坐标		
2000 国家	大地坐标系			

3.2.1.5 资源储量

本次可行性研究采用先露天后井下的开采方式,露天开采经初步技术经济分析,认为金品位0.8g/t以上资源均有开采价值。地下开采经初步技术经济分析认为金品位1g/t以上资源有开采价值。设计利用探明+控制的全部资源,推断资源可信度系数建议取0.65。

露天开采圈出两个境界,分别是IV号矿带露采境界和I号矿带露采境界,IV 号矿带露采境界根据开采顺序再分为南北两区。境界内利用矿石量1598.28×10⁴t,Au金属量28519.34kg,Au平均品位1.78g/t。

地下开采将矿区分为 IV 号矿带南部地采区、IV 号矿带北部地采区和 I 号矿带地采区三个采区,地采利用矿石量 $5176.22 \times 10^4 t$,Au 金属量 81036.54 kg,Au 平均品位 1.57 g/t。

区域	资源类别	矿石量 (t)	品位(g/t)	金属量(kg)
	探明	8659192	1.81	15689.81
IV 号北区	控制	2117849	1.88	3971.85
17 之40区	推断	2340139	1.95	4555.94
	小计	13117180	1.85	24217.60
	探明	0	0.00	0.00
IV 号南区	控制	1628094	1.54	2507.77
17 与用区	推断	435857	1.53	668.83
	小计	2063951	1.54	3176.60
	探明	0	0.00	0.00
I 号	控制	435614	1.31	568.85
1 5	推断	366063	1.52	556.30
	小计	801677	1.40	1125.15
	探明	8659192	1.81	15689.81
合计	控制	4181557	1.69	7048.46
ΉI	推断	3142059	1.84	5781.07
	小计	15982808	1.78	28519.34

表 3.2-5 露采境界内资源量表

3.2.1.6 矿石组成及类型

(1) 矿石矿物组成

矿石中查明矿物共计 40 多种,其中金属硫化物 23 种,非金属矿物 11 种,

氧化矿物6种,单质矿物3种。

与金矿化关系密切的金属矿物主要有黄铁矿、毒砂、辉铁锑矿、褐铁矿,其次有磁黄铁矿、白铁矿、黝铜矿、黄铜矿、闪锌矿、黄钾铁矾、辉锑矿、脆硫锑铅矿,非金属矿物主要有石英、绢云母、碳、方解石,其次有菱铁矿、绿泥石等。

(2) 矿石构造构造

矿石结构比较简单,按自然金形态划分为他形粒状结构、半自形粒状结构及 包含结构,其中主要为他形粒状结构及包含结构,自然金呈半自形粒状结构很少。 按硫化物结晶形态划分,矿石结构则较复杂,分为自形-半自形结构、细粒半自 形-他形粒状结构、交代结构、压碎结构(碎裂结构)、充填结构、鳞片状结构、 包含结构。

矿石构造按载金矿物集合体的形态、大小、相互关系及赋存状态可划分块状构造、稠密浸染状构造、稀疏浸染状构造、星点浸染状构造、细脉浸染状构造和 蜂窝状构造,其中稠密浸染状、稀疏浸染状、星点浸染状为常见构造。

(3) 矿石类型

矿床均由蚀变岩型矿石组成。按矿石氧化程度,将矿石划分为氧化矿石、原 生矿石两种,矿区氧化带平均深度约 18m。

氧化矿石中硫化物大多变为褐铁矿、黄钾铁矾及臭葱石,并产生金的次生富集,使一部分游离态的金重新聚集,以自然金方式生成,在裂隙和褐铁矿中常见自然金产出,部分呈蜂窝状产出。原生硫化物较少,有黄铁矿、毒砂、辉锑矿、磁黄铁矿等。

原生矿石依蚀变矿物种类、组合、构造等特征分为金-毒砂-黄铁矿-石英建造矿石、金-辉锑矿-毒砂-黄铁矿-石英建造矿石、金-磁黄铁矿-黄铁矿-石英-菱铁矿建造矿石和金-石英-菱铁矿建造矿石; 前两类矿石为矿床主要矿石类型。

(4) 矿石化学成分

矿区含矿岩性和围岩岩性基本相同,岩石、矿石化学分析见表 3.2-7。

类型	SiO ₂	Fe ₂ O ₃	FeO	CaO	MgO	TiO	MnO	Au
矿石	62.89	6.65	3	3.13	1.72	0.64	0.11	3.86
岩石	61.18	4	2.31	4.42	1.79	0.82	0.11	0.96

表 3.2-7 岩石、矿石化学分析结果表

类型	SiO ₂	Fe ₂ O ₃	FeO	CaO	MgO	TiO	MnO	Au
指标	K ₂ O	NaO	Al ₂ O ₃	P ₂ O ₃	H ₂ O+	H ² O ⁻	说	明
矿石	3.41	0.435	14.53	0.115	6.99	0.115	在矿石全	分析中, D ₃ 的同时
岩石	2.1	0.16	13.66	0.11	9.06	0		的含量为 9%

注: 表中 Au 单位为 g/t, 其它元素单位为%。

(5) 矿石中有益有害组分

矿石中有益组份为金,伴生组份主要为银、砷、硫、锑,其次为铜、铅、锌, 品位很低。伴生组分中银分布较均匀,可综合回收利用;砷、硫、锑若可综合回 收为有益元素,反之为有害元素;有害组份主要为碳。

(6) 金矿物特征

金矿物主要为自然金、含银自然金、银金矿、少量方金锑矿。其中自然金(包括含银自然金)和银金矿占94.46%,方金锑矿占5.54%。根据粒径大小分为可见金和不可见金,可见金按金矿物与载体矿物关系分为粒间金、包裹金和裂隙金。

金矿物形态形态主要为他形粒状,少量呈自形-半自形粒状,进一步细分为等粒状、长角粒状、麦粒状,约占 60%以上; 片状、枝叉状及薄膜状较少,在原生矿中不足 20%,而在氧化矿中增多。与金矿物形成条件有关。

矿石中金矿物粒径较细,中粒和粗粒级少,肉眼未见明金。重砂样品中见到自然金最大粒径为0.25mm,一般在0.01~0.1mm,占可见金的95%以上。在上百个光片中仅见到110粒自然金,经统计其嵌布粒度在0.001~0.06mm之间,属微细粒级。

3.2.1.7 矿石结构构造

矿石主要呈浸染状、脉状、条带状构造,其次可见块状构造等。矿石结构主要为自形-半自形粒状结构,其次为它形粒状结构、充填结构、包含结构、莓球状结构、环带结构、碎裂结构等。

3.2.1.8 矿石化学成分

原矿化学分析结果表明,金是主要的回收对象,银可综合回收,铜、铅、锌的品位很低,暂无回收价值,有害元素主要为 As 和 Sb。金物相分析结果表明,金主要以硫化物包裹金形式存在,分布率为 49.01%;其次以裸露金形式存在,

分布率为 44.66%, 裸露金指单体金或与硫化矿物、脉石矿物等连生但具有裸露 表面的金; 还有少部分以硅酸盐矿物包裹金形式存在, 分布率为 6.32%。碳物相 分析结果表明, 原矿中碳主要以碳酸盐矿物形式存在, 分布率为 83.33%, 少部 分以无定形碳形式存在, 分布率为 16.67%。

3.2.2 主要生产设备

本工程主要生产设备见表 3.2-10。

表 3.2-10 主要生产设备一览表

		衣 3.2-10 土	安土厂	以 任 し	心 衣	
序号	设备名称	型号及规格	单位	数量	功率	使用情况
	采矿设备					
1	凿岩机	7655	台	10		备用5台
2	电耙	2DPJ-28 型	台	1	28kW	
3	局扇	JK58-1NO.4	台	3	5.5kW	备用1台
<u> </u>	提升系统					
1	提升机	2JTP-1.6*0.9	套	1	55kW	
2	罐笼	2#单层单罐笼	个	1		
3	天轮	Ф1.6	个	2		
111	运输系统					
1	矿车	YFC-0.5 (6)	辆	18		
2	装载机	ZL-50 型	辆	1		
四	压气设施					
1	空压机	VY-12/7	台	1		
		VY-9/7	台	1		备用
五.	通风设施					
1	通风机	K40-6-No.13 型	台	1	18.5kW	
		K40-4-No.8 型	台	2	5.5kW	
六	供排水设施					
	水泵	D6-25*5 型	台	3	7.5kW	备用 2 台
七	机修设施					
1	电焊机	BX-I-330	台	2	21kVA	
2	砂轮机	M3040	台	2	1.5kW	
八	其他设备					
1	越野车	客货两用	辆	1		后勤

序号	设备名称	型号及规格	单位	数量	功率	使用情况
2	越野车	三菱	辆	1		
3	水箱	$5m^3$	个	2		生活区
4	油罐	200m ³	个	2		
5	卫星电话	华为	台	1		

3.2.3 原辅材料

生产时期的主要原辅材料消耗见表 3.2-11。

表 3.2-11 主要材料消耗表 单耗 序号 材料名称 单位 数量 单位 钻头(采矿) $^{10^4}$ t 个/年 0.6

年耗 达产年采剥 最大年采剥 108 108 个/10⁴t 个/年 (剥岩) 0.6 1517 1698 2 钻杆(采矿) 根/10⁴t 0.015 根/年 3 3 (剥岩) 根/10⁴t 0.015 根/年 38 42 冲击器外套(采矿) 个/10⁴t 个/年 9 9 3 0.05 (剥岩) $^{10^4t}$ 0.05 个/年 126 142 硬质合金(采矿) kg/年 29 4 $kg/10^4t$ 0.16 29 (剥岩) $kg/10^4t$ kg/年 405 453 0.16 56520 机油(采矿) $kg/10^4t$ 56520 5 314 kg/年 (剥岩) $kg/10^4t$ 320 kg/年 809280 905600 轮胎(采矿) 条/10⁴t 0.135 条/年 24 24 6 条/10⁴t 条/年 430 481 (剥岩) 0.17 7 柴油(采矿) $kg/10^4t$ 3200 kg/年 576000 576000 9357300 10471000 (剥岩) $kg/10^{4}t$ 3700 kg/年 8 齿尖(采矿) $^{10^4t}$ 0.45 个/年 81 81 (剥岩) $^{10^4}t$ 0.43 个/年 1087 1217 铵油炸药(采矿) $kg/10^4t$ 2000 kg/年 360000 360000 (剥岩) $kg/10^4t$ 1950 kg/年 4931550 5518500 2#岩石炸药(采矿) $kg/10^4t$ 11700 10 65 kg/年 11700 183950 (剥岩) $kg/10^{4}t$ 65 kg/年 164385 非电导爆雷管(采矿) 发/10⁴t 发/年 11 4680 4680 26 (剥岩) 发/10⁴t 发/年 63225 70750 25

3.2.4 物料平衡

根据《新疆萨瓦亚尔顿金矿采矿工程可行性研究报告》,采矿回采率92%, 贫化率 6%。境界内利用矿石量 1598.28×104t, Au 金属量 28519.34kg, Au 平均 品位 1.78g/t; 地下开采将矿区分为 IV 号矿带南部地采区、IV 号矿带北部地采区 和 I 号矿带地采区三个采区, 地采利用矿石量 5176.22×104t, Au 金属量 81036.54kg, Au 平均品位 1.57g/t。

本工程采矿生产过程物料平衡见图 3.2-6。

图 3.2-7 本工程采矿生产过程物料平衡图

3.2.5 公用工程

3.2.5.1 供电

矿区附近乌鲁克恰提乡现有110kV变电站,电压等级为110kV、35kV和10kV, 距离矿区约45km,项目电源拟由此变电站引接,采用35kV电压等级供电至配 套选厂。选矿工业场地建设一座35/10kV总降压变电站,变电站内安装3台 25MVA、35/10kV主变压器。

由 35kV 总降压变电站不同的 10kV 母线段分别引 1 回路架空线路至IV矿带露采场,沿采场境界外沿半环型架设,分别向 3 座预装式变电站供电。由 35kV 总降压变电站不同的 10kV 母线段分别引 1 回路架空线路至 I 矿带露采场,沿采场境界外沿半环型架设,向 1 座预装式变电站供电。能满足矿山生产和生活用电需要。

3.2.5.2 给排水

(1) 给水

萨瓦亚尔顿河主要接受冰雪融水、大气降水及少量地下水补给,一般情况下 (除暴雨、洪水期)河床宽1.05~3.07m,断面水深0.05~0.3m,流速0.76~1.54m/s; 4月至6月初为洪水期,7月初至10月底为枯水期,11月至次年3月为冰封期; 萨瓦亚尔顿河全年日均流量为2350m³/d。萨瓦亚尔顿河可作为水源地,能够满足部分生产生活用水需求。于萨瓦亚尔顿河旁新建水源取水泵房,泵房地面标高约3190m,泵房尺寸L×B×H=18m×12m×5m。泵房内配2台(1用1备)D280-43×5水泵。单台水泵参数Q=335m³/h,H=190m,N=250kW,每台泵配置变频调速装置。

新铺设DN300焊接钢管长约1.0km将水扬送至选厂生产新水及消防水池、生活区生活水池及生活区消防水池。

生活区新建1座100m³生活水池,水池尺寸为L×B×H=10m×5m×3m,场地标高为3380m。于生活水池旁设生活水一体化净水设施,净水量50m³/h,从水源取水管道上引水至生活水一体化净水设施,处理达到生活水饮用标准后进入生活区100m³生活水水池。生活用水由枝状管网自流至生活区各用水点,管道采用PE管,管径De160,埋地敷设,管顶覆土深度按2m考虑。

项目总用水量28893m³/d, 其中: 生活水1365m³/d, 原矿带水334m³/d, 生产新水5969m³/d, 厂前回水12640m³/d, 尾矿库回水8585m³/d。

采矿用水量: 1600m³/d。

依托选矿用水量: 25234m³/d, 其中: 生活水49m³/d, 原矿带水334m³/d, 生产新水3626m³/d, 厂前回水12640m³/d, 尾矿库回水8585m³/d。

生活区用水400m³/d。

暖通锅炉补水(生活水质)792m³/d。

其他杂用水200m³/d。

未预见水量 667m³/d, 其中: 生活水未预见水量 124m³/d, 生产新水未预见水量 543m³/d。

(2) 排水

本工程废水主要为矿井涌水及少量生活污水。

生活区生活污水主要为食堂餐厅污水和办公生活的冲厕、洗浴等污水。食堂污水需经隔油池预处理,办公生活冲厕排污需经化粪池处理。

生活区生活排水370m³/d,与选厂生活排水44m³/d一起经生活污水处理系统 处理达标后回用至选厂。

矿山在生产过程中没有其它有毒、有害成份的废水排出。

于IV矿带南出入沟附近新建 900m3 沉淀池 1 座,尺寸 L×B×H=30m×10m×3.5m,分两格,池底标高 3450m。于沉淀池附近新建 900m3 采矿生产新水及消防水池 1 座,尺寸 L×B×H=25m×10m×4.5m,池底标高 3440m。

生产期第 8 年于 I 矿带平硐附近新建 275m3 沉淀池 1 座,水池尺寸: $L\times B\times H=25m\times 5m\times 3m$,场地标高 3760m。于沉淀池附近新建 300m3 采矿生产新水及

消防水池 1 座, 水池尺寸:L×B×H=15m×10m×3m, 场地标高 3752m。

涌水经沉淀处理后自流至采矿生产新水及消防水池,多余水量自流至 1200m³选矿厂生产新水及消防水池(池底标高 3280m)。

本工程水平衡图见图 3.2-8。

图 3.2-8 本工程水平衡图

3.2.5.3 供热

矿区无工业余热、区域热源及气源,在依托选厂新建2座水源热泵房;在生活区新建1座空气源热泵机组循环水泵房;在副井附近新建1座水源热泵房,满足矿区供热要求。

采厂、选厂厂房供暖热媒为 55/47℃低温热水,热媒由水源热泵房提供,选用钢制散热器,采用上供下回或上供上回同程式供暖系统;生活区供暖热媒为 55/47℃低温热水,热媒由空气源热泵机组循环水泵房提供,选用钢制散热器,采用上供下回或上供上回同程式供暖系统。

3.2.6 总平面布置

企业矿山主要由露采坑、采矿工业场地、排土场、表土堆场、办公生活区、 爆破器材库及其他辅助工业场地组成。其布置考虑了以下因素:

- ①充分利用井田占地,布设生产、生活福利设施;
- ②考虑远近结合,预留发展余地;
- ③满足工艺流程,充分利用自然地形,尽量减少挖、填方量;
- ④布置紧凑、经济合理,占地少,投资省;
- ⑤场地各建构筑物间应符合安全、环保、防火规范要求等。
- 矿区平面布置图见图 3.2-9。

3.2.7.1 总体布置方案

总体布置以露采坑和采矿工业场地为主,由于地形的局限性,排土场尽量靠近露采坑布置,表土堆场靠近各自需剥离表土的场地布置,其他相关辅助设施则

分散布置的形式,功能分区明确。场地之间以矿区主要道路和管道为联系,形成了功能明确、交通便捷、物流顺向、主次分明、互不干扰的总体布局,便于矿山生产管理。

(1) 露天采坑

本次共设计两个露采坑,分别为 IV 矿带露采坑及 I 矿带露采坑,其中 IV 矿带位于矿区中部的西侧,I 矿带位于矿区中部的东侧。IV 矿带共含两个出入沟一南出入沟及北出入沟,分别布置于露天采坑南北两侧,南出入沟标高 3464.00m,北出入沟标高 3544.00m; I 矿带出入沟布置于露采坑西南角,标高 3788.00m。IV 露采坑自北向南全长约 2300m、自西向东宽约 500m; I 露采坑自北向南全长约 500m、自西向东宽约 200m; 露采坑总占地面积约 127×10⁴m²。

(2) 采矿工业场地

采矿工业场地主要围绕各井口及各平硐口布置。采矿工业场地包括副井场地、斜坡道硐口场地、回风井场地、进风井场地、各平硐口场地等。采矿工业场地占地面积约 3.5×10⁴m²。

工业场地平面布置图见图 3.2-10。

(3) 排土场

排土场服务于露天采坑,为了缩短废石的运输距离,采取就近排土的方式,此次共设计两个排土场一南部排土场及北部排土场,其中南部排土场布置于 IV 露采坑南出入沟南侧约 850m 处的山谷,主要堆存 IV 矿带全部地采及部分露采的废石,占地面积约 118.4×10⁴m²; 北侧排土场布置于 IV 露采坑北出入沟西北侧约 260m 处的山谷,主要堆存 IV 露采坑部分露采废石及 I 矿带废石,占地面积约 105.6×10⁴m²。排土场总占地面积约 224×10⁴m²。

(4) 表土堆场

为了生产期结束后露天采坑及排土场能够有足够的覆土复垦,基建期对露采坑及排土场进行表土剥离,剥离表土厚度 0.3m。考虑表土运输距离,本项目设计 2 个表土堆场—1~2#表土堆场。2#表土堆场布置于 IV 露采坑北出入沟东南侧约 170m 处,用于堆存两个露采坑及北部排土场的表土,占地面积约 4.3×10⁴m²,容积 74.8×10⁴m³; 2#表土堆场布置于南部排土场东侧约 260m 处,用于堆存南

部排土场的表土,占地面积约 $4.3\times10^4\text{m}^2$,容积 $45\times10^4\text{m}^3$;表土堆场总占地面积约 $8.6\times10^4\text{m}^2$ 。

北部排土场剥离面积 105.6×10⁴m²,表土实方量约 31.68×10⁴m³;南部排土场剥离面积 118.4×10⁴m²,表土实方量约 35.52×10⁴m³;考虑下沉后的松散系数 1.03、富余系数 1.02,IV 及 I 露采坑及北部排土场三者剥离表土所需设计容积为73.3×10⁴m³,南部排土场剥离表土所需设计容积为 37.3×10⁴m³,1~2#表土堆场容积均大于剥离表土所需设计容积,满足堆存要求。1#、2#表土堆场均为单台阶堆存,堆高均为 30m,1~2#表土堆场单台阶边均坡角为 33.7°。

(5) 办公生活区

办公生活区布置于南部排土场西侧约 1.5km,包括一栋办公楼、两栋宿舍楼、一栋食堂以及值班室。办公生活区占地面积 2.5×10⁴m²。

(6) 爆破器材库

爆破器材库包括 20t 炸药库和 9 万发雷管库,布置于南部排土场西侧约 260m处,占地面积约 0.5×10⁴m²。两个库之间设置防火屏障,防火屏障采用防护土堤的形式。爆破器材库周边设置砖砌围墙,防止无关人员随意出入,库内不种植树木。库区周围修筑防火沟渠,防火沟渠边缘距库区围 10m,沟渠断面 B×H=1.0m×1.0m,为土沟。库区内设水池等固定消防设施。

(7) 其他辅助工业场地

其他辅助工业场地包括配电设施、机修车间、综合仓库、地磅房、汽修车间、加油站及给排水设施等。

3.2.7.2 工业场地总平面布置形式及特点

采矿工业场地主要围绕着各井口及平硐口分散布置。采矿工业场地包括副井场地、南、北回风井场地、1~2#回风井场地、斜坡道口场地、3180 平硐口场地、3420 平硐口场地、3480 平硐口场地、3540 平硐口场地、3570 平硐口场地、3690 平硐口场地、3752 平硐口场地,露采坑北出入沟旁。

副井场地主要包括副井、副井井塔、加热室及配电室,其中副井井口中心坐标: X=4438975.111, Y=13439927.471, Z=3420.00。南回风井场地主要包括南回风井、风道、通风机房、配电室,其中南回风井井口中心坐标: X=4437608.999, Y=13438912.702, Z=3570.00。北回风井场地主要包括北回风井、风道、通风机

房、通风机房配电室,其中北回风井井口中心坐标: X=4440216.507, Y=13440636.672, Z=3550.00。1#回风井场地主要包括 1#回风井、通风机房,其 中 1#回风井井口中心坐标: X=4440130.870, Y=13441600.725, Z=3870.00。2# 回风井场地主要包括2#回风井、通风机房,其中2#回风井井口中心坐标: X=4438996.305, Y=13440976.418, Z=3860.00。 斜坡道口场地主要包括斜坡道口、 加热室, 其中斜坡道口中心坐标: X=4438932.991, Y=13439745.888, Z=3400.00。 3180 平硐口场地主要包括平硐口,其中 3180 平硐口中心坐标: X=4436357.385, Y=13438790.803, Z=3180.00。3420 平硐口场地主要包括平硐口, 其中 3420 平 硐口中心坐标: X=4438740.024, Y=13439736.284, Z=3420.00。3480 平硐口场 地主要包括平硐口,其中3480平硐口中心坐标: X=4438559.795, Y=13439635.336, Z=3480.00。3540 平硐口场地主要包括平硐口, 其中 3540 平硐口中心坐标: X=4438314.613, Y=13439493.611, Z=3540.00。3570 平硐口场地主要包括平硐 口、加热室, 其中 3570 平硐口中心坐标: X=4439419.312, Y=13440707.754, Z=3570.00。3630 平硐口场地主要包括平硐口, 其中 3630 平硐口中心坐标: X=4439416.583, Y=13440875.330, Z=3630.00。3690 平硐口场地主要包括平硐 口,其中3690 平硐口中心坐标: X=4439366.943, Y=13440970.913, Z=3690.00。 3752 平硐口场地主要包括平硐口, 其中 3752 平硐口中心坐标: X=4439360.080, Y=13441059.720, Z=3752.00.

平面布置合理性分析:工业场地位于矿区西南侧,可减少运矿过程中的扬尘 污染和生态破坏。本区域常年主导风向为西北风,工业场地内设地下破碎站,颗 粒物排放对环境的影响较小,因此选址合理。

3.2.7.3 新建排土场

项目生产服务期内废石总量 17862×10^4 t。废石体重 $2.82t/m^3$,松散系数 1.7,沉降系数 20%,富余系数 1.02,计算得出排土场的设计容积 $V=9152.7\times10^4m^3$ 。

结合附近地形、地貌及环境条件,设计考虑了三个排土场场址方案:

方案一: 排土场布置于 IV 号矿带露采坑北出入沟东北侧约 230m 的山谷,设计排土场废石堆存标高在 3530~3700m 之间,容积 9228.6×10⁴m³ > 9152.7×10⁴m³,满足堆存要求。

方案二: 排土场布置于 IV 号矿带露采坑南出入沟南侧约 900m 的山谷,设

计排土场废石堆存标高在 3220~3400m 之间, 容积 9187.4×10⁴m³>9152.7×10⁴m³, 满足堆存要求。

方案三:该方案设计了两个排土场—北排土场和南排土场,北排土场布置于 IV 号矿带露采坑北出入沟东北侧约 4000m 的山谷,南排土场布置于 IV 号矿带露采坑南出入沟南侧约 900m 的山谷。北排土场废石堆存标高在 3510~3620m 之间,容积 3354.14×10⁴m³,南排土场废石堆存标高在 3270~3400m 之间,容积 5502.6×10⁴m³。其中北排土场主要堆存 IV 露采坑部分废石及 I 露采坑所有废石,共 3340.6×10⁴m³,南排土场主要堆存 IV 露采坑部分废石及 I 露采坑所有废石,两个排土场均满足堆存要求。

排土场布置图如下:

图 3.2-10 排土场布置图

方案一,汽车运输距离远,因此年均汽车运输费用最大;排土场高程最高,废石运输需逆向运输,爬坡费用占比大;河流改道工程量最小1410m;合费用现值最大。

方案二,汽车运输距离和方案一相比,相差不大,但排土场高程较低,废石运输为正向运输,爬坡费用占比小,因此年均汽车运输费用相比较小;由于排土场投入使用之前,在方案一基础上新增河流改道工程 2.3km,生产年第 3 年需二次投资;且河流改道工程会影响基建周期,进而对整个矿山的服务周期和开采计划产生影响;综合费用现值居中。

方案三,汽车运输距离最短,且结合地形,采取"高土高排,低土低排"的排土措施,因此年均汽车运输费用最小;南部排土场于生产期第3年投入使用,二期河流改道工程不影响基建周期,对整个矿山的服务周期和开采计划产生无影响;

综合费用现值最小。

综合,设计选择确定方案三为最终选址。排土场周边设置截洪沟,拦截排土场外围洪水。平面布置图见图 3.2-13。

3.2.7.5 矿山道路

(1) 场外道路

因矿区现有通往厂外的道路被拟建南部排土场截断,需重新修筑一条 7m 宽的道路通往厂外。厂外道路采用三级厂外道路标准,道路技术条件如下:路面宽度 7m,路基宽度 9m;最大纵坡 6%,极限最小圆曲线半径 125m,一般最小圆曲线半径 200m。道路结构:4cm 砂砾磨耗层,18cm 级配碎石面层,15cm 天然砂砾垫层。

(2) 露天矿山道路

运矿石和废石道路采用二级露天矿山道路设计标准,双车道路面宽度 10.5m,路基宽度 12m;最大纵坡 8%,最小转弯半径 25m,最小圆曲线半径 25m。道路结构:4cm 砂砾磨耗层,21cm 级配碎石面层,15cm 天然砂砾垫层。

(3) 工业场地道路

工业场地及办公生活区道路采用厂内道路主干道和次干道标准,根据环保和消防要求,本设计道路尽量采取环形布置。双车道路面宽度 7m,路基宽度 9m,最大纵坡 8%;单车道路面宽度 4m,路基宽度 6m,最大纵坡 8%,最小转弯半径 6m。道路结构:4cm 砂砾磨耗层,15cm 级配碎石面层,15cm 天然砂砾垫层。

3.2.8 生产周期与劳动定员

根据企业组织机构的设置,以及工艺流程设计和设备配置状况,企业总劳动定员编制包括生产人员 352 人、管理人员 41 人、服务人员 28 人,合计 421 人。年工作天数为 300d,每天 3 班,每班工作 8h。

3.3 河流改道方案

萨瓦亚尔顿河与矿体及其周边含水岩组间存在一定水力联系,对矿床的开采有一定的影响。可能会造成地表局部塌陷,导致露采边坡、地采井巷岩体及排土场区域失稳。因此应对流经露采上游的萨瓦亚尔顿河采取相应防治措施,防止河水溃入。

拟从北部排土场坡脚,亦即露采场北部界限外选择合适位置,布置挡水坝和 隧洞将萨瓦亚尔顿河截流,并进行河流改道,避开露采场和南部排土场引至下游 天然河道排走。

改道路线分为两段,第一段隧洞长1210m,将水由1[#]挡水坝前引至南部3448m 沟口。该段隧洞进口标高3470m,出口标高3448m,底板平均坡度1.8%。采用城 门洞型,净断面尺寸2.2×2.2m。第二段隧洞长1700m,从南部排土场上游沟口建 2[#]拦水坝,通过隧洞将由3448m标高沟口排出再自然汇流至此处的水继续引排至 下游。该段隧洞进口标高3370m,出口标高3250m,底板平均坡度7.0%。采用城 门洞型,净断面尺寸2.0×2.0m。

挡水坝均为砼砌石坝,坝高约 8m,坝顶宽 2m,上游铅直,下游坡比 1: 0.7。 具体设计见附件设计说明书。

3.4 工程分析

本项目包括露天开采、地下开采,由于开采时序、开采时段不一致,故本报告分别分析露天开采和地下开采的工艺流程。

3.4.1 露天开采

- (1) 采剥方法:根据矿山地形地质条件、矿山生产规模及机械化程度,设计采用自上而下水平分层、台阶式采剥法。
 - (2) 工作面布置及推进方向

根据地形地质条件,沿或斜交矿体走向掘开段沟,沿或斜交矿体走向布置采剥工作面,垂直矿体走向由下盘向上盘推进工作面。

(3) 采剥工艺

采用潜孔钻机钻凿中深孔,多排孔爆破,液压挖掘机采装,自卸汽车运输。 矿石装入自卸汽车外运,废石装入自卸汽车运至废石场。

- (4) 穿孔作业
- 1、设备选型

矿山年采剥能力较大,矿岩硬度较高,设计采用 KQG150 型高风压露天潜 孔钻机,钻孔直径 165 毫米,深度 17.5 米。钻机技术性能先进,配有干式除尘 器;司机室密封,防寒、保温、隔音;钻孔效率高,是矿山开采理想的穿孔设备。

2、钻机数量

矿山设计建设规模为 180 万吨/年,年作业天数 300 天,每天 3 班。KQG150型露天潜孔钻机台班效率 45 米,废孔率 7%,台年效率 20925 米,米孔爆破量 20.57 立方米 (56.98 吨),1台钻机年完成采剥总量 119.23 万吨。为满足矿山年采剥总量 300.50 万吨,需要 7台 KQG150 型露天潜孔钻机同时工作,不设备用。

3、辅助作业用凿岩机

消除根底,平整钻机作业平台、修整边坡和处理边角矿体等采用 3 台 Y24型手持式凿岩机,备用 3 台,共 6 台。

4、大块二次破碎

矿山年采矿石量 180 万吨,大块率控制在 5%以内。设计露天采场配备液压碎石机 2 台,用于大块矿岩二次破碎,其底车选用国产 CE220-6 型全液压挖掘机(反铲),配置 GB220E 液压破碎器,其台班破碎能力约 250 吨。

(5) 爆破作业

1、爆破参数

根据矿岩物理力学性质,设计最小抵抗线 4 米,孔距 6 米,排距 4 米。倾斜中深孔长 12 米,其中超深长 1.4 米,堵塞长度大于 3 米。米孔爆破量 20 立方米(55.60 吨)。

2、炮孔布置方式及爆破方法

采用三角形布孔,大区多排孔微差挤压爆破,对角线起爆或 V 型起爆,以便实现小抗抵线大孔距爆破,从而改善爆破效果,降低大块率,减少根底、降低后冲作用及其他有害效应。靠近最终边坡的爆破作业,其炮孔布置、爆破方式及装药量等方面均应严格控制,宜采用预裂爆破等方法,最大限度的减少爆破对边坡的破坏。

生产过程中布置炮孔时,应根据矿山的实际情况和生产经验,适时修正爆破参数,以便取得最佳的爆破效果。

采用电力起爆,中深孔爆破的一次爆破量应保证挖掘机有7天以上装载量。 进行爆破作业必须严格执行爆破安全规程,根据爆破方法、爆破规模及地形 条件圈定爆破危险区边界,做好警戒工作,确保人员和建筑物及设备的安全。

(6) 采装工作

该矿生产规模属于中型,矿岩硬度较大,设计选择具有先进技术水平的斗容 4 立方米 CE650-6 型全液压挖掘机。

矿山年采剥总量 22556 万吨,年作业天数 300 天,每天 3 班。根据矿山年采剥矿岩量及采装设备生产能力计算,设计选择 CE650-6 型全液压挖掘机同时工作 3 台,不设备用。

为集拢爆破分散的矿石、为钻机平整作业场地、修筑和维护道路、清扫边坡等辅助工作,选用 2 台 ZL50 型装载机。

上述设备可供两个露天采场交错使用。

3.4.2 井下开采范围及开采技术条件

3.4.2.1 设计开采范围

井下主要开采对象为露天境界外标高 3572~2792m 之间的IV号矿带和标高 3752~3390m 之间的 I 号矿带。该项目矿体走向较长,为实现大规模开采,尽可能延长矿山总达产年限,本次可研在平面上将井下划分为 3 个采区,分别是IV号矿带地采南区、IV号矿带地采北区和 I 号矿带地采区,各采区标高范围如下:

- (1) Ⅳ号矿带地采南区: 2880~3600m, 0~148#勘探线:
- (2) IV号矿带地采北区: 2820~3480m, 107~0#勘探线;
- (3) I 号矿带地采区: 3390~3752m, 39~44#勘探线。

3.4.2.2 开采方式

井下采用无底柱分段崩落法回采。

3.4.2.3 开采顺序

矿山遵循先露天后井下的开采顺序,在露天开采结束或进入减产期时逐步转入地下开采。井下采用无底柱分段崩落法回采,采区内按段高 60m 划分中段,采区内垂向上按自上而下顺序回采,走向上按南、北两侧向矿体中部退采,优先通过平硐开采地表标高以上挂帮矿体。

3.4.2.4 开采技术条件

萨瓦亚尔顿金矿床产于韧性挤压剪切带中,目前,矿区内共发现了21条矿化带,其中Ⅳ号矿化带规模最大,其次为Ⅰ号矿化带。

Ⅳ号矿化带受F₁₅大断裂控制,长度大于4000m,宽5~80m,控制最大斜深

1134m,圈出了十余条矿体,规模大小不等,其中IV-1号矿体规模最大,贯穿整个IV号矿化带,占IV号矿化带资源量的88.85%,占全矿区资源量的78.26%,平均倾角71.70°。

I 号矿化带由 5 个亚矿化带组成,其中 I -1 号矿化带规模最大,受 F_2 断裂控制,断续控制长 2308m,宽 6~21m 不等,控制最大斜深 509m,圈出 5 个矿体。在地表呈不规则的条带状,总体走向近北东向,倾向北西,倾角 70~86°,平均倾角 78°。

3.4.2.5 井下采矿方法

本项目工程地质条件复杂,主要矿体赋存于构造带中,矿岩稳固性差,矿体走向较长(IV号矿体和 I 号矿体走向分别为 3.6km 和 1.2km),倾角约 71°。工业矿体平均厚度约 15m,其中,矿体厚度大于 10m 的占 87%,矿体厚度小于 10m 的占 13%。矿石品位低,为急倾斜低品位矿床。

该矿体顶底板允许暴露面积小,不适合采用空场法回采,可采用充填法或崩落进行回采。充填法和崩落相比,工艺相对复杂,成本较高。由于该矿床为低品位矿床,为减小开采成本,本次可行性研究推荐选用无底柱分段崩落法开采。

(1) 矿块结构参数

矿块沿矿体走向布置,长 50m,宽为矿体厚度,分段高 20m,中段高度 60m,进路长 50m。当矿体厚度小于 20m时,采用单进路回采,约占 55%;当矿体厚度大于 20m时布置 2条进路,约占 45%。

(2) 采准切割

采准工程主要有分段平巷、回采进路、采区斜坡道、进风天井、回风天井、矿石溜井、穿脉、分段联络道、进风井联络道,切割工程包括切割平巷和切割天井。

阶段运输平巷、分段平巷、采区斜坡道及进风天井、回风天井、溜井布置在矿体下盘,阶段运输平巷布置在下中段矿体回采岩移圈以外。每两个矿块布置1条采场溜井、1条进风天井和1条回风天井,各分段通过采区斜坡道相连。分段平巷、回采进路、采区斜坡道、分段联络道、切割平巷、进风井联络道为3.8m×3.6m,进风天井和回风天井为2.0m×2.0m,溜井直径3.0m,切割天井为2.0m×2.0m。综合采切比为56.75m3/kt,采切工程量见表5-26~27。

(3) 回采出矿

矿块以切割天井为自由面,拉开切割槽,从矿块端部后退式回采,上下分段 同时回采时,上分段回采应超前下分段 20m 以上。

凿岩选用 Simba1354 采矿钻车,在回采进路内凿上向扇形炮孔,边孔水平夹角 55°,排距 2m,孔底距 2.5~3.0m,装药选用 BQF-100 装药器。出矿选用 4m3 井下铲运机将爆落矿石装运至 20t 矿用汽车。采场生产能力 300t/d。

(4) 采场通风

新鲜风流由阶段运输平巷、采区斜坡道、进风天井进入至分段平巷,新鲜风流由局扇送入回采工作面,污风经矿块回风天井进入上中段回风巷。采场均配备局扇辅助通风。

(5) 覆盖岩

放矿工作应在覆盖岩下进行,因矿体顶板较破碎,预计顶板可随进路推进自然冒落形成覆盖层,若无法自然冒落,则需强制放顶。可采用强制崩落围岩形成,也可以利用第一分段矿石作为作为覆盖岩,待顶板围岩崩落后,再放出覆盖矿石层,生产中应根据实际情况灵活应用。

3.4.2.6 井下开拓运输

1、开拓方案的选择

本项目主要开采IV号矿带和 I 号矿带,其中IV号矿带设计利用资源量占本次 地采总设计利用资源量 91.18%,为本次可研重点研究对象。

IV号矿带主要矿体平均倾角 71°, 赋存标高 3600.00~2792.00m, 地表最低标高 3390m, 在标高 3452m 以上该矿体具备平硐开拓条件。根据矿床开采技术条件并结合选厂位置,本次可研选择平硐+竖井+斜坡道、平硐+胶带+斜坡道等 2种开拓运输方式共 3种开拓运输方案进行经济技术比较,比较结果详见第 3章。

I 号矿带根据矿床开采技术条件及总图布置选择平硐+盲斜坡道进行开拓。

2、开拓运输方案简述

(1) Ⅳ号矿带

井下采用平硐+胶带+斜坡道联合开拓。

3452m以上3个中段3572m、3512m、3452m布置平硐,用于运输人员、材料、废石兼做各中段通风、供水、排水、管缆通道。在井下标高3272m设主胶带平硐,

露采矿石及地采标高3272m以上矿石通过3[#]、4[#]溜井下放至3312m中段,再通过汽车转运至1[#]、2[#]溜井,下放至3272m破碎硐室,破碎后通过主平硐运到选厂原矿堆,原矿堆标高3273.5m,主胶带长度3500m。3272m以下地采矿石通过5[#]、6[#]溜井下放至2852m破碎硐室,破碎后由2[#]胶带斜井输送至3272m主胶带平硐,再由主胶带运往选厂,2[#]胶带斜井底标高2852m,顶部标高3272m,坡度18%,长度2334m,分2段折返。地表设副井,标高3420m,与3420m以下各中段连接,用于提升人员、材料,并作为井下进风通道兼供水、排水、电缆通道,采用分期建设,一期服务至3272m中段,与3272m主胶带同年投入使用;二期于第9年开始投入使用,服务至2792m中段。

在副井南侧布置斜坡道硐口,斜坡道沿矿体走向和下盘折返式布置,与3452m以下各个中段连通,主要作为废石、材料、人员运输通道兼辅助进风,硐口标高3400m,斜坡道总长度约4676m。

在矿体走向南北两侧布置2条回风井,采用倒段布置,与各中段连接,作为井下回风出口,同时布设梯子间作为次要安全出口,其中南回风井地表标高3540m,井底标高2852m;北回风井地表标高3614m,井底标高2792m。

(2) 【号矿带

井下采用平硐+盲斜坡道开拓。标高 3570m 以上矿石、废石采用汽车经各平 硐分别运至地表破碎站和排土场。标高 3570m 以下矿石、废石用汽车经盲斜坡 道运至 3570m 主平硐,再通过 3570m 主平硐分别运往地表破碎站和排土场。同时,平硐、盲斜坡道也作为人员、材料进出井下通道。1[#]、2[#]回风井分别布设在 矿体南北两翼,用于井下回风。

3、开拓工程

(1) Ⅳ号矿带

1) 平硐

标高 3452m 以上设 4 个平硐,平硐口标高分别为 3572m、3512m、3452m,断面规格 4.2m×3.8m,主要作为南部地采区 3452m 以上各中段、废石、材料、人员运输通道并作为各中段主要进风通道和安全出口。

2) 主胶带平巷

井下 3180m 破碎硐室下方布置主胶带平巷,作为矿石主要运输通道,将矿石运往选厂原矿堆,胶带运输能力 7000t/d。胶带平巷硐口坐标 X = 4436835.178, Y = 438348.443,长度 3500m,巷道断面 5.2m × 3.9m。

3)副井

地表设副井,中心坐标 X = 4438994.227, Y = 439973.473。副井井口标高 3420m, 井底标高 2790m, 井筒净直径 6m, 采用混凝土支护。副井与井下 3420m 以下各中段连接,用于提升人员、材料,并作为井下主要进风通道兼供水、排水、电缆通道。

4) 斜坡道

斜坡道口位于副井南侧 50m 处,井口坐标 X = 4438879.708,Y = 439853.856。 沿矿体走向和下盘折返式布置,与 3452m 以下各个中段连通,主要作为废石、 材料、人员运输通道兼辅助进风。斜坡道断面规格 4.4m×3.9m,硐口标高 3400m, 最低服务中段 2792m,平均坡度 13%,斜坡道总长度约 4676m。

5) 盲胶带斜井

盲胶带斜井布置于井下 2852m 水平, 井底标高 2852m, 井口标高 3272m, 坡度 18%, 水平长度 2333m, 提升高度 420m, 巷道断面 5.2m×3.9m。

6) 回风井

南、北回风井分别布置在矿体南北两翼。回风井采用倒段布置,与各中段连接,用于井下回风,同时井内布设梯子间作为井下第二安全出口。回风井直径均为 4m,采用混凝土支护,其中南回风井地表标高 3540m,井底标高 2852m;北 回风井地表标高 3614m,井底标高 2792m。

(2) I 号矿带

1) 平硐

标高 3570m 以上设 4 个平硐,平硐口标高分别为 3752m、3690m、3630m、3570m,断面规格 4.0m×3.6m,用于运输矿石、废石、人员、材料并作为各中段主要进风通道和安全出口。其中 3570m 平硐为主平硐,与 3570m 盲斜坡道连接。

2) 盲斜坡道

盲斜坡道硐口位于位于 3570m 主平硐内,通过联络道与 3570m、3510m、3450m、3390m 等中段连接,用于运输 3570m 以下各中段矿石、废石、人员、材

料并作为主要进风口。断面规格 4.2m×3.8m, 硐口标高 3570m, 最低服务中段 3390m, 平均坡度 13.5%, 斜坡道总长度约 1402m。

3) 回风井

1#、2#回风井分别布置在矿体南北两翼。回风井与各中段连接,用于井下回风,同时井内布设梯子间作为井下第二安全出口。回风井直径均为3m,采用混凝土支护,倒段布置,基建期开拓至3570m中段,其中1#回风井地表标高3780m,井底标高2880m;2#回风井地表标高3900m,井底标高2820m。

3.4.3 环境影响因素分析

3.4.3.1 施工期

项目施工期间,工程建筑施工机械设备运转、施工车辆运行以及施工人员的活动会对周围大气环境和声环境造成暂时性的影响,但这种影响会随着施工的结束而终止。

- 1、废气:建构筑物基础开挖、物料堆放、建材运输等过程产生的施工扬尘及施工机械尾气等。
 - 2、废水:施工过程产生的施工废水和施工人员产生的生活污水。
 - 3、噪声:施工机械设备、运输车辆等产生的噪声。
 - 4、固废:建构筑物建设过程产生的建筑垃圾及施工人员的生活垃圾等。
 - 5、生态环境: 场地平整造成的地表植被破坏和水土流失影响。

3.4.3.2 运营期

本工程建设投运后,产生大气污染物主要来自原矿开采、破碎等过程产生的粉尘,原矿、表土及废石装载、运输等过程产生的扬尘,排土场及废石场扬尘等;水污染物主要为矿坑、矿井废水、生活污水等;固体废物主要为采矿废石、机修废物、办公生活垃圾、除尘灰、沉淀池底泥等;噪声污染主要为各类机械设备产生的噪声;生态影响主要为占用土地、植被破坏、水土流失及野生动物的影响等。

露天采矿生产工艺流程及排污节点示意图见图 3.4-1。

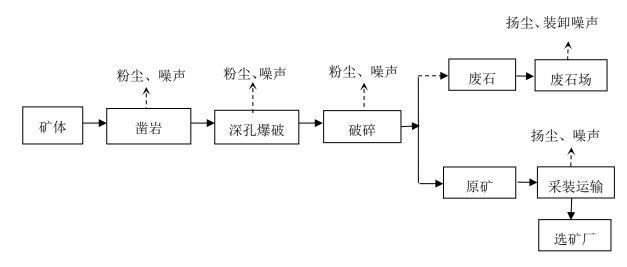


图 3.4-1 露天开采工艺排污节点示意图

本项目矿区露天开采产污节点统计见表 3.4-6。

表 3.4-6 本项目露天开采产污节点统计表

类型	序号	产污节点	主要污染物	备注
	G1	穿孔凿岩	粉尘	凿岩
	G2	爆破	粉尘、烟气	爆破
	G3	破碎	粉尘	无组织
大气污	G4	矿石、表土、 废石装卸	扬尘	装卸
染	G5	排土场	扬尘	废石堆放
	G6	表土堆场	扬尘	表土堆放
	G7	道路运输	粉尘	运输
	G8	柴油设备	CO、NOx、THC、SO ₂	柴油燃烧废气
	W1	排土场	镍	淋溶废水
水污染	W2	生活污水	COD、BOD₅、SS、氨氮	生活污水
	W3	矿坑水	COD、SS	矿坑水
	N1	凿岩、爆破	噪声	凿岩、爆破
噪声污	N2	破碎	噪声	液压碎石机
染	N3	矿石采装运输	噪声	采装运输设备
	N4	机械设备	噪声	空压机等
田仏応	S 1	原矿开采	废石、表土	一般固体废物
固体废物 物	S2	机修废物	废机油、含油抹布	危险废物
初	S3	生活垃圾	果皮、纸张、塑料等	生活垃圾
生态环 境	/	原矿开采	植被破坏、水土流失、惊扰野生 动物	开采作业区

矿井涌水 沉淀过滤 抑尘 抑尘 沉淀 扬尘、噪声 洒水 洒水 噪声 回用 扬尘、噪声 风扇机 废石场 废石 破碎 扬尘 凿岩爆破 矿体 提升运输 原矿 选矿厂 噪声、粉尘 扬尘、噪声

地下开采生产工艺流程及排污节点示意图见图 3.4-2。

图 3.4-2 地下采矿工艺流程及排污节点示意图

本项目矿区地下开采产污节点统计见表 3.4-7。

表 3.4-7 本项目地下开采产污节点统计表

类型	序号	产污节点	主要污染物	备注
	G1	凿岩爆破	粉尘、爆破废气	凿岩爆破
	G2	原矿破碎	PM_{10}	井下破碎
十层运流	G3	原矿、废石运输	颗粒物	井下运输
大气污染	G4	矿石、废石装卸	颗粒物	装卸
	G5	柴油设备	CO, NOx, THC, SO ₂	柴油燃烧废气
	G6	排土场	扬尘	废石堆放
水污染	W1	原矿开采	SS	矿井涌水
	W2	生活污水	COD、BOD5、SS、氨氮	生活污水
	W3	排土场	铅、汞	废石淋溶废水
	N1	凿岩爆破	噪声	采矿机械、爆破
	N2	原矿破碎	噪声	破碎设备
噪声污染	N3	矿石转运	噪声	装卸、运输设备
	N4	井巷抽排水	噪声	水泵
	N5	通风	噪声	风扇机
固体废物	S1	原矿开采	废石	一般固体废物
	S2	沉淀池	底泥	一般固体废物
	S3	生活污水处理站	底泥	一般固体废物
	S4	生活垃圾	果皮、纸张、塑料等	生活垃圾
	S5	机修废物	废机油、含油抹布	危险废物
	S6	除尘灰	粉尘	一般固体废物

类型	序号	产污节点	主要污染物	备注
生态环境	/	原矿开采	地表沉陷、植被破坏、水土流失	开采作业区

3.4.3.3 闭矿期

随着工程采矿服务期结束,若无进一步开发利用计划,整个生产系统将进入 闭矿期,结合本工程特点可知,按影响主体划分其影响情况主要来自于五方面, 具体有:

1、废气

矿山资源开采完毕后,露天采场、排土场、废石场以及运输道路扬尘污染源 消失并对排土场进行复垦,覆土的过程中会产生一定量的无组织扬尘。

2、废水

闭矿后,主要为迹地恢复工作,在此过程中无生产废水、生活污水产生。

3、噪声

采矿结束后,采矿设备及运输车辆等噪声源均已撤离矿区,工程噪声源也消失。

4、固体废物

采矿结束后,排土作业也结束。固体废物主要为工业场地办公生活区拆除的 建筑垃圾,送至当地生态环境部门指定的地点处置。

5、生态破坏

矿山服务期满后,原有机械设备及运输车辆等全部撤离矿山;对露天采场各级平台及采场底板进行土地整治,回填覆土(来源于排土场堆存的剥离表土),并栽种当地根系发达生命力强的耐旱草种或树种,尽快恢复植被,防止水土流失,可采用人工拉运浇灌喷洒绿化。排土场进行表面平整、压实处理、覆土及植被恢复。

3.4.4 施工期污染源强分析

3.4.4.1 大气污染

(1) 施工扬尘

施工期的大气污染源主要为施工场地裸露地表在大风气象条件下的风蚀扬尘,建筑材料运输、装卸中的扬尘,基础工程土方开挖扬尘,土方运输车辆行驶产生的扬尘,临时物料堆场产生的风蚀扬尘等。污染物大多为无组织排放,类比

同类型项目施工期有关监测资料,施工扬尘不采取防治措施,平均风速下影响至施工边界外 200m 内 TSP 浓度超标 3~5 倍,采取防治措施情况下一般可以达标。

(2) 施工机械尾气

在施工期间,施工运输设备和一些动力设备运行将排放尾气,尾气中主要污染物为 CO、NO_x、THC 等。

3.4.4.2 水污染

施工期水污染源主要为施工废水和生活污水,其中施工废水包括施工过程中产生的少量泥浆废水、施工区的冲洗与设备清洗废水等。

(1) 施工废水

施工中产生的泥浆废水中泥沙含量较高,主要污染物为 SS;施工区的冲洗水和设备清洗废水主要污染物为 SS,施工废水收集处理后循环使用。

(2) 生活污水

项目建设高峰期施工人员约 100 人,生活用水按照 100L/人·d 计,污水产生量按用水量的 80%计,以此估算生活污水产生量为 8.0m³/d。生活污水主要为洗漱废水和粪污水,主要污染物为 SS、BOD5、COD、氨氮等,各污染物浓度较低,施工期优先建设污水处理设施用于处理施工人员生活污水。

3.4.4.3 噪声

工程施工期噪声主要来自两个方面,一是建筑施工活动和工程施工机械噪声,二是运输车辆的交通噪声;此外,在设备安装过程也有可能产生噪声污染。机械噪声源主要包括挖掘机、电锯、吊车、装载机、震动器等,其声级在 70~100dB(A)之间,具有点声源的特点,车辆噪声源包括载重汽车等,其声级强度在70~90dB(A),具有线声源和流动源的特点。施工机械均为间歇运行,噪声持续时间较短,随着施工活动的结束,施工期的噪声影响随即消失。

施工期主要噪声源及声级强度见表 3.4-8。

序号 设备名称 声级强度(dB) 特征 1 空压机 88-92 连续 2 挖掘机 82-90 间断 3 90-95 间断 装载机 载重汽车 4 82-90 间断

表 3.4-8 施工期主要噪声源及声级强度一览表

序号	设备名称	声级强度(dB)	特征
5	振捣棒	80-88	间断
6	电锯	88	间断
7	切割机	88	间断
8	混凝土搅拌机	88-92	间断
9	焊接机	75~80	间断
10	液压起重机	90	间断

3.4.4.4 固体废物

本项目施工期产生固体废物主要为建构筑物建设过程产生的建筑垃圾和施工人员生活垃圾等。

(1) 建筑垃圾

建构筑物建设过程产生的建筑垃圾约为 5t, 其中可利用部分回收利用、不可利用部分运至乌恰县城建部门指定场所处置。

(2) 生活垃圾

施工人员人均日产生活垃圾量为 0.5kg/人·d, 施工高峰日生活垃圾产生量约 0.05t/d, 收集后定期由乌恰县环卫所拉运至乌恰县生活垃圾填埋场填埋处理。

3.4.4.5 生态影响

本项目拟建地面工程主要包括采矿场、采矿工业场地、原矿运输场地、爆破器材库、排土场、表土堆场等,本项目新增占地面积为 365hm²。

矿山的开挖及压占土地,辅助工程的建设开挖与占地,改变地表形态和生态 景观,破坏地表植被,引发新的水土流失。同时还将改变土地利用类型,造成土 地利用结构和功能的变化。

- (1) 在施工期,表土剥离导致一定面积的植被完全破坏,野生植物丧失, 剥离物占用土地,从而导致土壤侵蚀和景观格局的改变;
- (2)施工期期间地表剥离及剥离物的运输、排弃,将形成新的水土流失。 排土场排弃的剥离物在原始地形上形成松散的土岩堆体,排土场表层的松散土粒 易被大风吹走,造成水土流失;
 - (3) 工业场地、排土场场及道路建设都将压占土地,破坏原有地表植被。
- (4)施工期的建筑材料运输、装卸,基础工程土方开挖等产生的扬尘,会 对周边地表植被生长造成影响。

3.4.5 运营期环境污染源强分析

本次运营期污染源强参照《污染源源强核算技术指南 准则》(HJ884-2018)进行核算。准则指出源强核算方法包括实测法、物料衡算法、产污系数法、排污系数法、类比法及实验法等,本项目所有场地和设施均新建,因此综合考虑采用产排污系数法、类比法等进行源强核算。

3.4.5.1 大气污染源及污染物排放情况

本工程运营期大气污染源主要来自原矿开采、破碎等过程产生的粉尘,原矿、废石等装载、运输过程产生的扬尘,表土堆场、排土场扬尘以及食堂餐饮油烟等。

1、露天开采

本项目露天矿石开采规模为 180 万 t/a。露天开采产生的废气包括穿孔凿岩粉尘、爆破粉尘、烟气、破碎粉尘、排土场扬尘和道路运输扬尘。

(1) 穿孔凿岩粉尘

参考包钢科技第 38 卷第 5 期《露天矿开采过程中粉尘污染控制(孙丽宝文宏)》(2012 年 10 月)中关于粉尘排放量的确定方法,钻机工作时,其附近空气中粉尘浓度平均为 448.9mg/m³;本矿采用 7 台 YQ-150 型潜孔钻机穿孔,其排风量为 12m³/min,结合本项目凿岩钻孔作业量,每次爆破需钻孔 50 个,单孔作业时间约为 60min,每年爆破作业次数为 42 次,钻孔过程中,潜孔钻排放的粉尘量 Q 为: 50×448.9mg/m³×12m³/min×60min/次×42 次/a=0.68t/a(0.73kg/h)。

穿孔作业拟采用湿法作业,除尘效率可达到 70%以上,一般影响范围小于 50m²,则采取措施后,穿孔凿岩粉尘排放量约 0.2t/a。

(3) 爆破粉尘、烟气

露天采矿爆破过程会产生含 CO、NO_x等的爆破烟气,属瞬时污染源,同时还会产生爆破粉尘,其中 CO 和 NO_x 为有毒有害气体,产生量与炸药使用量等有关。爆破炮烟中 NO_x、CO 的产生量分别按 32g/kg、3.6g/kg 炸药量估算,炸药消耗量为 560t/a,每年爆破产生的 NO_x、CO 的量分别为 17.92t/a、2.016t/a。由于工程为露天开采,空气流动性较好,受自然风流扩散影响,可造成采场采矿下风向的大气瞬时污染,这种瞬时污染随着时间推移,以及污染物在空气中不断扩散,其浓度也会逐渐降低。

参考包钢科技第 38 卷第 5 期《露天矿开采过程中粉尘污染控制(孙丽宝文宏)》(2012年10月)中关于粉尘排放量的确定方法,爆破粉尘排放量占矿岩总爆破量的 0.0011%,则类比计算,本项目矿山爆破的粉尘根据建设单位提供资料,则爆破粉尘排放量为 1800000×0.0011%=19.8t/a。在爆破前,向预爆破矿体或表面洒水,粉尘产生量可减少 70%以上,采取措施后,爆破粉尘排放量约 5.94t/a。

(4) 破碎粉尘

根据本项目开发利用方案,设计矿岩合格块度≤800mm,大块率 3%,超过挖掘机铲装能力的大块需要进行二次破碎,二次破碎选用 1 台 SW-45C 液压破碎锤。需破碎的大块约 5.4 万 t/a, 180t/d。

参考《污染源统计调查产排污核算方法和系数手册》中石灰石开采行业中破碎工序颗粒物产生系数为 0.0307kg/t 产品,本项目碎石机粉尘产生量为 1.82t/a (0.23kg/h)。向预破碎矿石表面洒水,破碎时进行洒水抑尘,粉尘排放量可减少 70%以上,采取措施后,破碎粉尘排放量约 0.546t/a (0.069kg/h)。

(5) 排土场扬尘

①表土堆场扬尘

表土堆场在风力作用下的起尘量取决于堆场与风向的夹角、物料的比重、粒径分布、风速大小、物料含水率等多种因素,而装卸过程中的起尘还与落差、物料密度等因素有关。

采用公式: Q₁=11.7U^{2.45} • S^{0.345} • e^{-0.5} • e^{-0.5(W-0.07)} 公式 (一)

计算参数: Q₁一矿堆起尘量, (mg/s);

W-物料湿度, (5%);

ω一空气相对湿度, (43%);

S一堆场表面积:

U—临界风速, (2.5m/s)。

计算结果: 在不采取任何措施的情况下表土堆场产尘量为 2.02t/a(0.23kg/h)。通过加强环境管理、采取洒水降尘、出入车辆冲洗、覆盖抑尘网等措施以实现减少扬尘,尽可能选择无风或微风的天气条件下进行作业,可将表土堆场扬尘无组织逸散量减少 80%以上,则表土堆场无组织扬尘排放量为 0.404t/a (0.046kg/h)。

②排土场扬尘

排土场废石对方产生的扬尘量按照《固体物料堆存颗粒物产排污核算系数手册》中的公式计算。

颗粒物产生量核算公式:

$$P = ZC_y + FC_y = \{N_C \times D \times (a/b) + 2 \times E_f \times S\} \times 10^{-3}$$

计算参数: P——颗粒物产生量(t);

ZCy——装卸扬尘产生量(t);

FCy——风蚀扬尘产生量(t);

Nc--年物料运载车次(车):

D——单车平均运载量(t/车):

(a/b)——装卸扬尘概化系数(kg/t),a 指各省风速概化系数(查表取 0.0011),

b 指物料含水率概化系数(查表取 0.0084);

E_f——堆场风蚀扬尘概化系数(查表取 0);

S——堆场占地面积(m²)。

经计算,排土场扬尘产生量为 32.94t/a(3.76kg/h)。向废石表面洒水,废石装卸时进行洒水抑尘,可将排土场扬尘无组织逸散量减少 80%以上,则排土场无组织扬尘排放量为 6.59t/a(0.75kg/h)。

2、地下开采

项目运营期矿区地下开采产生的废气包括凿岩爆破废气、矿石破碎粉尘、原矿和废石井下装载及运输粉尘。

(1) 凿岩爆破废气

①凿岩爆破粉尘

井下开采过程中,由于凿岩、爆破、放矿等原因,各落料点会产生无组织粉尘,采矿时,打眼、放炮过程中会产生扬尘,地下开采采用湿式凿岩工艺,喷雾洒水降尘,控制粉尘产生。地下开采粉尘和烟气排放分为爆破瞬时排放和正常通风排放,根据建设方提供资料,炸药用量为 1020t/a,根据<张兴凯、李怀宇.露天矿爆破粉尘排放量的计算分析(J).金属矿山,1996 年第 3 期>一文,爆破粉尘排放强度为 54.2kg/t(炸药量),爆破瞬时粉尘可达 300mg/m³,强制通风后外排地面大气中的粉尘浓度低于 120mg/m³。根据本项目开发利用方案,矿井总风量

为 311m³/s,粉尘含量为 2mg/m³,粉尘产生量为 1.778kg/h (14.08t/a),采用湿式凿岩后,粉尘排放量为 2.816t/a。矿井废气由风机送至矿井上部,最终排至地表大气中。

②爆破废气

本项目金矿在地采过程中需要使用炸药和雷管进行爆破。根据黄忆龙《工程爆破中的灾害及其控制》,岩石爆破产生的CO量为6.3g/kg炸药、NOx为14.6g/kg炸药,本项目矿区炸药使用量为炸药用量为1020t/a,则爆破产生CO的产生量为6.42t/a,排放速率为0.81kg/h;NOx产生量为14.89t/a,排放速率为1.88kg/h。井下爆破是间歇性排放,爆破废气经新鲜风稀释后排出,对大气环境影响不大。

(2) 矿石破碎粉尘

井下开采时,中段矿石下放至破碎系统,以上开采时,矿石通过自重下放至中段破碎系统。矿石在井下通过 2 台颚式破碎机破碎,根据《第二次全国污染源普查工业污染源产排污核算系数手册》破碎工序产生的粉尘为 4g/s·台破碎机,本项目设 2 台颚式破碎机(每个破碎硐室各 1 台),破碎机工作时间按 330d、每天间歇工作 8h 计,则破碎硐室和破碎硐室的粉尘产生量均为 38.016t/a(14.4kg/h),在 2 处破碎硐室内各配置一台湿式除尘器(除尘效率不低于 99%)和一台风机(处理风量 40000m³/h),经湿式除尘器净化后废气排至回风巷道,最终排出地表。经湿式除尘器净化, 2 处破碎硐室内的粉尘排放量均为 0.38t/a(0.144kg/h),排放浓度为 3.27mg/m³。经通风系统从风井排出的粉尘浓度可降至 0.75mg/m³。

(3) 原矿、废石井下装载、运输粉尘

原矿、废石在井下溜矿、装车等作业地点采取洒水喷雾降尘措施,粉尘排放量较小,本次评价不对其进行定量分析评价。

3、运输扬尘

主要是运土及运矿石车辆在行驶过程中,造成道路扬尘和物料散落。其运输过程中产生的扬尘量采用以下经验公式计算:

$$Q_p=0.123\times (V/5) \times (M/6.8)^{0.85}\times (P/0.5)^{0.72}$$

 $Q_{p0}=Q_p\times L\times Q/M$

式中: Qp——道路扬尘量, kg/km·辆;

Q_{p0}——总扬尘量, kg/a;

V——车辆速度, 20km/h;

M——车辆载重, 20t/辆;

P——路面灰土覆盖率,洒水后为 0.5kg/m³;

L——运距, km;

Q----运输量, t/a。

经上述公式计算,运输扬尘量为18.56t/a。在采取道路洒水降尘、道路路面铺碎石等措施后,可以抑制扬尘量约80%,采取措施后运输扬尘量为3.712t/a。

4、柴油燃烧废气

凿岩机、空压机及备用柴油发电机产生的燃烧烟气主要含 CO、NOx、THC、SO₂等。本工程年耗柴油增加量为 560t/a。另据《环境统计手册》,燃烧 1t 柴油产生的 SO₂ 的量为柴油含硫量的 2 倍,柴油中含硫量为 0.2%。据此柴油机运转过程中排入大气的 CO、NOx、THC 以及 SO₂ 的量可用下式计算。

$$Q_{CO} = 2.40 \times \frac{m}{175}$$

$$Q_{NO_X} = 10.99 \times \frac{m}{175}$$

$$Q_{THC} = 4.08 \times \frac{m}{175}$$

$$Q_{SO2} = 2 \times 0.002 \times m$$

式中: Q—污染物排放量, kg;

m—柴油机消耗柴油量, kg;

废气污染物产生情况见表 3.4-7。

表 3.4-7 柴油燃烧废气污染物产生一览表

污染物名称	产生量(t/a)
СО	10.64t/a
NO_X	48.73t/a
THC	18.09t/a
SO_2	3.104t/a

本项目废气污染物产排情况统计见表 3.4-8。

	<u> </u>	1 2111/24 41421	111110000111	•
	污染源	污染物名称	项目产生量	项目排放量
	凿岩粉尘	颗粒物	0.68t/a	0.2t/a
	爆破粉尘	颗粒物	19.8t/a	5.94t/a
	慢水吹	CO	2.016t/a	2.016t/a
露天	爆破废气	NOx	17.92t/a	17.92t/a
开采	破碎粉尘	颗粒物	1.82t/a	0.546t/a
	道路运输扬尘	颗粒物	18.56t/a	3.712t/a
	排土场粉尘	颗粒物	32.94t/a	6.59t/a
	表土堆场扬尘	颗粒物	2.02t/a	0.404t/a
	爆破废气	CO	6.42t/a	6.42t/a
		NOx	14.89t/a	14.89t/a
11		颗粒物	14.08t/a	2.816t/a
井下	排土场扬尘	颗粒物	32.94t/a	6.59t/a
	破碎粉尘	颗粒物	38.016t/a	0.38t/a
	井下装载、运输粉尘	颗粒物	少量	少量
	道路运输扬尘	颗粒物	18.56t/a	3.712t/a
		CO	10.64t/a	10.64t/a
	此油燃烧应与	NO_X	48.73t/a	48.73t/a
	柴油燃烧废气	THC	18.09t/a	18.09t/a
		SO_2	3.104t/a	3.104t/a

表 3.4-8 本项目废气污染物产排情况统计表

3.4.5.2 水污染源及污染物排放情况

(1) 矿井涌水

IV号矿带最大值为 4926.67m³/d,正常值为 3242.73m³/d; I号矿带最大值为 280.11m³/d,正常值为 190.33m³/d,采用絮凝+沉淀处理,沉淀处理后暂存于回用 水池,全部用于地表及井下凿岩及降尘、排土场及道路降尘、选矿厂选矿用水等,不外排。灌溉期,生活污水经选矿厂地埋式一体化污水处理设施处理达标后用于矿山绿化和降尘;非灌溉期,尾水通过抽排水工程输送至选矿厂用于选矿生产。

(2) 生活污水

本工程新增劳动定员 352 人。根据《新疆维吾尔自治区生活用水定额》,办公生活用水按 80L/人计,一年按 300 天工作日计算,项目生活用水量约为 28.16m³/d(8448m³/a),污水按 80%的排放量计,则平均每天排放的生活污水约 22.52m³/d

(6758m³/a)。生活污水依托选矿厂地埋式一体化污水处理设施处理后用于矿山绿化和道路降尘。

(3) 排土场淋溶水

当进入排土场的雨水量和冰雪消融水大于场内废石的最大持水量时,多余的水份渗出形成排土场淋溶水,废石中部分被雨、雪水溶解的成份也随之流出,因此淋溶水中含有一定量的矿物元素。对照本矿山的废石浸出毒性分析结果,从分析结果来看,本矿废石浸出液中主要有害成份重金属的浓度均低于《危险废物鉴别标准——浸出毒性鉴别》(GB5085.3-2007)的限值和《污水综合排放标准》(GB8978-1996)中的第一类水污染物最高允许排放浓度限值。

项目区降雨量不大,排泄方式主要为地表蒸发排泄,平均降水量远小于蒸发量,在该地区特殊的气候条件下废石淋溶水产生的量极小,很快通过自然蒸发。由大气降水产生的淋溶水量很少,废石淋溶水渗透到地下水的可能性极小。

3.4.5.3 固体废物及排放情况

本工程所产生的固体废物包括采矿废石、生活垃圾、污泥以及废机油等。

(1) 采矿废石

矿山年产废石(代码: 080-001-29)量为 22008.12 万 t/a,根据《危险废物鉴别标准——浸出毒性鉴别》(GB5085.3-2007),本工程废石属 I 类一般固废,此次共设计两个排土场,其中北部排土场布置于 IV 号露采场北出入沟东北侧约400m 的山谷,堆存标高在 3470.00~3600.00m 之间,容积 1865.3×10⁴m³,占地面积 55×10⁴m²,主要用于堆存 IV 号露采场部分废石及 I 号露采、地采所有废石;南部排土场布置于 IV 号矿带露采场南出入沟南侧约 900m 的山谷处,堆存标高在 3310.00~3480.00m 之间,容积 9693.7×10⁴m³,占地面积 120×10⁴m²,主要用于堆存 IV 号露采场部分废石及 IV 号地采废石。排土场要求按照《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020)中 I 类场的要求进行选址与设计。

(2) 生活垃圾

本工程工作人员新增 352 人,每人每天按 0.5kg 计,则生活垃圾(代码: 90 0-999-99)产生量约为 176kg/d(52.8t/a)。生活垃圾集中收集、集中处置,定期运至配套选矿厂,并与选矿厂生活垃圾一同送乌恰县生活垃圾填埋场处置。

(3) 危险废物

本工程产生的危险废物为废机油、废油桶,危废类别 HW08-900-214-08,年 产生危废约 8t/a,统一收集至矿区防渗危废暂存间,定期交由有危废处置资质的 公司进行处置。

3.4.4.4 噪声污染源及源强

矿山开采期间凿岩、爆破、压气、铲装运设备、破碎设备等生产作业时均会 产生噪声。产生高噪声的设备主要有采矿场的凿岩机、通风机、空压机。本工程 主要噪声源及其声强情况见下表。

序号	噪声源	位置	噪声源强度(dB(A))	备注
1	凿岩机	采矿	108~110	间歇性
2	提升系统	采矿	85~100	间歇性
3	通风机	采矿	90~100	连续性
4	空压机	采矿	88~92	连续性
5	爆破噪声	采矿	100~110	间歇性
6	挖掘机及装载机	采矿	80~90	间歇性
7	液压破碎锤	采矿	85~95	间歇性
8	井下破碎机	工业场地	85~100	间歇性
9	各类水泵	工业场地	80~100	间歇性
10	砂轮机	工业场地	70~90	间歇性
11	运输车辆	运输	82~90	断续性

表 3.4-11 本工程主要噪声源情况一览表

3.4.5 非正常工况排放情况

本工程的大气环境非正常工况可能发生在破碎除尘系统不能正常工作的情况下,此时粉尘排放可导致井下工作环境恶化,项目所在区域的大气环境间接受到影响。假定非正常工况下为破碎除尘系统发生故障,故障时除尘效率降低至 0,且发生故障时未及时停车检修。非正常工段粉尘排放统计见表 3.4-12。

_	<u> </u>					, ,	
运 数. 3万	非元卷 于如	ù=.≥h.⊪hm	浓度	源强	源高	持续	排放量
污染源	非正常工况	污染物	(mg/m ³)	(kg/h)	(m) 时间	(kg)	
3272m水平	除尘系统故障,除	半八ノト	227	144	 井下	20	7.2
破碎硐室	尘效率下降到0	粉尘	327	14.4	# F	30min	7.2

表 3.4-12 非正常工况破碎除尘工段粉尘浓度统计

运轨通	北大学士和	运剂量	浓度	浓度 源强 源高 持续		持续	排放量
污染源	非正常工况	污染物	(mg/m^3)	(kg/h)	(m)	时间	(kg)
2852m水平	除尘系统故障,除	W/\ .1\	227	1.4.4	# /	20 :	7.0
破碎硐室	尘效率下降到0	粉尘	327	14.4	井下	30min	7.2

3.5 产业政策符合性及规划符合性分析

3.5.1 产业政策符合性分析

3.5.1.1 产业政策符合性分析

本工程为金矿露天+井下开采工程,根据 2019 年 11 月 6 日国家发展和改革委员会第 29 号令《产业结构调整指导目录(2019 年本)》,本工程不属于限制类-八、黄金中日处理岩金矿石 300 吨(不含)以下的露天采选项目、100 吨(不含)以下的地下采选项目,本工程日处理量为 6000 吨,符合国家产业政策要求。

3.5.1.2《新疆维吾尔自治区非煤矿种(12 种)矿山最小生产规模和最低服务年限(暂行)》的符合性分析

"关于印发《新疆维吾尔自治区非煤矿种(12 种)矿山最小生产规模和最低服务年限(暂行)》的通知"(新自然资发[2019]25 号)中对"金矿(岩金)"有最低生产建设规模 3 万吨/年及最低服务年限 8 年的要求,其备注有"最小生产规模和最低服务年限是新建矿山准入的必要条件"。

本项目为新建项目,年生产建设规模为 180 万吨/年,服务年限为 27 年,故本项目符合《新疆维吾尔自治区非煤矿种(12 种)矿山最小生产规模和最低服务年限(暂行)》中的相关规定。

3.5.1.3 与《矿山生态环境保护与污染防治技术政策》的符合性分析

本技术政策适用于矿产资源开发规划与设计、采矿和废弃地复垦等阶段的生态环境保护与污染防治。相关技术政策符合性见表 3.5-1。

表 3.5-1 相关技术政策符合性

类别	具体要求	本工程	符合性
指导	矿产资源的开发应贯彻"污染防治	本工程已严格按照本技术政策的	
方针	与生态环境保护并重,生态环境保	指导方针,矿山开采过程中采用	符合
カギ	护与生态环境建设并举; 以及预防	"边开采、边复垦"的方针	

类别	具体要求	本工程	符合性
	为主、防治结合、过程控制、综合 治理"的指导方针。		
	发展绿色开采技术,实现矿区生态 环境无损或受损最小	本工程采用国内较为成熟、使用普遍的工艺进行生产,在开采过程中 使用清洁能源、采用清洁生产。	
	发展干法或节水的工艺技术,减少 水的使用量	矿井涌水循环使用、不外排,大大 减少了水的使用量。	
技术原则	发展无废或少废的工艺技术,最大 限度地减少废弃物的产生;	本工程在运营过程中产生的污染物为扬尘、生产生活废水、废石、 危险废物等,经环保设施及措施处 理后,污染物产生量较小。	符合
	矿山废物按照先提取有价金属、组 分或利用能源,再选择用于建材或 其它用途,最后进行无害化处理处 置的技术原则。	本工程为金矿采矿项目,开采出的 废石暂存于排土场,后期闭矿后用 于矿山生态恢复与土地复垦,综合 利用不外排。	
复垦 率	新建矿山应做到边开采、边复垦, 破坏土地复垦率达到 85%以上。	根据《矿山地质环境保护与土地复垦方案》,矿区开采过程中要求做到"边开采、边复垦",本工程占地为低覆盖度草地,复垦后,土地复垦率可达到85%以上。	符合
清洁生产	鼓励矿山企业开展清洁生产审核, 优先选用采、选矿清洁生产工艺, 杜绝落后工艺与设备向新开发矿区 和落后地区转移。	参照《黄金行业清洁生产评价指标体系》中的指标对本工程进行清洁生产水平分析,本工程清洁水平达到二级标准,无落后工艺。	符合
矿资开规与计产源发划设计	(1)禁止在依法划定的自然保护区 (核心区、缓冲区)、风景名胜区、 森林公园、饮用水水源保护区、重 要湖泊周边、文物古迹所在地、地 质遗迹保护区、基本农田保护区等 区域内采矿。 (2)禁止在铁路、国道、省道两侧 的直观可视范围内进行露天开采。 (3)禁止在地质灾害危险区开采矿 产资源。 (4)禁止新建对生态环境产生不可 恢复利用的、产生破坏性影响的矿 产资源开发项目。	本工程位于乌恰县境内,项目区占地不涉及自然保护区(核心区、缓冲区)、风景名胜区、森林公园、饮用水水源保护区、重要湖泊周边、文物古迹所在地、地质遗迹保护区、基本农田保护区等;距本工程最近的 S309 省道位于矿区南侧28km,10km 范围内无铁路、国道、省道等交通设施,本工程在闭矿后将对矿区内生态及土地进行整治恢复至原貌。	符合

类别	具体要求	本工程	符合性
	(1)限制在生态功能保护区和自然保护区(过渡区)内开采矿产资源。生态功能保护区内的开采活动必须符合当地的环境功能区规划,并按规定进行控制性开采,开采活动不得影响本功能区内的主导生态功能。 (2)限制在地质灾害易发区、水土流失严重区域等生态脆弱区内开采矿产资源。	本工程建设符合新疆维吾尔自治 区矿产资源总体规划 (2021~2025),项目区不涉及生 态功能保护区和自然保护区;本工 程区生态服务功能为水土保持功 能区,开采活动不会影响功能区的 主导生态功能;本工程区不属于地 质灾害易发区、水土流失严重区等 生态脆弱区。	符合
	(1) 矿产资源开发应符合国家产业政策要求,选址、布局应符合所在地的区域发展规划。 (2) 矿产资源开发企业应制定矿产资源综合开发规划,并应进行环境影响评价,规划内容包括资源开发利用、生态环境保护、地质灾害防治、水土保持、废弃地复垦等。	本工程建设符合新疆维吾尔自治 区矿产资源总体规划 (2021~2025)、符合国家产业政 策;采取人工阻隔后,选址、布局 符合《新疆维吾尔自治区重点行业 环境准入条件(修订)》;本项目 已开展矿产资源开发利用方案编 制工作,环境影响评价工作在进行 中。	符合
	应优先选择废物产生量少、水重复 利用率高,对矿区生态环境影响小 的采、选矿生产工艺与技术。	本工程在运营过程中产生的污染物为扬尘、生产生活废水、废石、 危险废物等,经环保设施及措施处 理后,污染物产生量较小。	符合
	地面运输系统设计时, 宜优先考虑 采用封闭运输通道运输矿物和固体 废物。	本工程地面运输采用公路运输,运 输车辆均采用篷布遮盖,减少物料 散落及扬尘污染。	符合
矿山基建	(1)对矿山勘探性钻孔应采取封闭等措施进行处理,以确保生产安全。 (2)对矿山基建可能影响的具有保护价值的动、植物资源,应优先采取就地、就近保护措施。 (3)对矿山基建产生的表土、底土和岩石等应分类堆放、分类管理和充分利用。 (4)矿山基建应尽量少占用农田和耕地,矿山基建临时性占地应及时恢复。	本工程勘探期间的钻孔进行封闭 处理,确保后期生产安全; 矿区内已设置警告标示、设置铁丝 围栏,禁止采矿活动破坏植被生长 环境;基建产生的表土、底土和岩 石均分类堆放至排土场内,后期闭 矿后用于矿山生态恢复与土地复 垦,综合利用。综合利用不外排; 本工程矿山占地类型为低覆盖度 草地,矿区内无农田和耕地,临时 占地均按要求进行生态恢复。	符合

类别	具体要求	本工程	符合性
	(1)对于露天开采的矿山,宜推广 剥离—排土—造地—复垦一体化技术。 (2)推广应用充填采矿工艺技术, 提倡废石不出井,利用尾砂、废石 充填采空区。 (3)推广减轻地表沉陷的开采技术,如条带开采、分层间隙开采等 技术。	本工程为露天+地下开采矿山,采 用湿法凿岩,废石堆放至排土场 内,后期闭矿后用于矿山生态恢复 与土地复垦,综合利用;根据矿区 地形地貌、周边环境及项目特点, 不宜采用充填开采技术,采矿工艺 采用无底柱分段崩落采矿方法。	符合
采矿	(1)鼓励将矿井水优先利用为生产 用水,作为辅助水源加以利用。在 干旱缺水地区,鼓励将外排矿井水 用于农林灌溉,其水质应达到相应 标准要求。 (2)宜采取修筑排水沟、引流渠, 预先截堵水,防渗漏处理等措施, 防止或减少各种水源进入露天采场 和地下井巷。 (3)宜采取灌浆等工程措施,避免 和减少采矿活动破坏地下水均衡系 统。 (4)宜采用安装除尘装置,湿式作 业,个体防护等措施,防治凿岩、 铲装、运输等采矿作业中的粉尘污 染。	经核实,本工程矿井涌水收集后回 用于生产,项目区生活水源由配套 选矿厂供应。 本工程人工阻隔方案已设计完成, 设计采取修筑引水涵管、挡水坝、 引流隧洞和盖板明渠,将采矿生产 与地表水间形成有效隔断,确保不 会对自然水体产生污染影响。 本工程采用湿法凿岩,定期对道 路、工业广场进行洒水抑尘,减少 扬尘对大气的影响。	符合
	(1)应根据采矿固体废物的性质、 贮存场所的工程地质情况,采用完善的防渗、集排水措施,防止淋溶水污染地表水和地下水; (2)宜采用水覆盖法、湿地法、碱性物料回填等方法,预防和降低排土场的酸性废水污染;	对排土场设置挡渣坝,截排水设施,堆存的废石要分层堆置、压实和覆土。排土场上游来水方向按照一百年一遇的防洪标准设置一条浆砌石结构、梯形断面的截洪沟。	符合
废弃 地复 垦	(1) 矿山生产过程中应采取种植植物和覆盖等复垦措施,对露天坑、排土场永久性坡面进行稳定化处理,防止水土流失和滑坡。 (2) 排土场等固废堆场服务期满	排土场停止使用后,土地应尽量恢复其原有土地功能,平整场地,覆土复垦,覆土厚度不小于0.3m,以防止其对环境的不良影响。用于覆土的土壤取用以不破坏现有植被	符合

类别	具体要求	本工程	符合性
	后,应及时封场和复垦,防止水土	为前提,尽量不取用地形坡度大的	
	流失及风蚀扬尘等。	地区的土壤,以避免因取土而造成	
		水土流失量的增加。并加强取土过	
		程的环境管理工作,尽可能减少取	
		土对环境造成的不利影响。	

3.5.2 规划、规范符合性分析

3.5.2.1 与《新疆维吾尔自治区国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》的符合性分析

按照"深化北疆东疆,加快南疆勘查"的总体思路,开展重点成矿区带地质调查和矿产勘查,做好矿产资源开发利用储备。贯彻新发展理念,建设绿色矿山,实现可持续发展。加强准南、库拜、三塘湖等区域煤田煤层气勘查,推进煤层气产业化开发。开展塔里木盆地北缘、阿尔金山吐格曼等区域稀有、稀土金属矿产调查评价,推进昆仑山西部大红柳滩稀有金属和火烧云铅锌矿开发。加大昆仑山北部煤炭资源勘探开发力度,满足南疆地区用煤需求。加强塔里木、准噶尔盆地及周边中小盆地页岩气(油)、煤层气勘查,推进油砂、油页岩和南疆浅层地温能、水热型地热资源和干热岩资源调查评价。加快推进天山中部和东疆铁矿、钒钛资源勘查开发。

本工程位于克孜勒苏柯尔克孜自治州乌恰县 305°方向直距 110km 处,位于西南天山南脉,主要开采矿种为金矿,符合《新疆维吾尔自治区国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》中的相关规定。

3.5.2.2 与《克孜勒苏柯尔克孜自治州国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》的符合性分析

根据《克孜勒苏柯尔克孜自治州国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》(2021 年 1 月 3 日在克州第十四届人民代表大会第五次 会议通过)第五章 第一节 加快传统产业转型升级中指出: "利用国家、自治区 实施新一轮传统产业重大技术改造升级工程机遇,推动黑色金属、有色金属、建 材、轻工等传统产业重点企业升级改造、提质增效。

壮大提升金属采选冶产业。加快黑色金属、有色金属等优势资源开发利用,

做大做强铁、锰、铜、锌、金、钒、钛等黑色、有色金属产业,积极推进锌、锰资源综合利用基地建设,加快推进采选治一体化发展,引进大企业、大集团参与"建链、补链、强链"建设,实现高质量发展。加快推进电解锰、电解锌下游产业链项目、铜矿采选治一体化深加工项目、金矿(采选)和合作开发项目建设,积极培育锰、钒、钛系新材料产业,推进精深加工产业集聚发展,将克州打造成为新疆重要的锰锌铜铁等生产基地"。

——有色金属产业:加快推进紫金锌业乌拉根锌矿 15000t/d 技改项目、紫金锌业乌拉根锌矿 25000t/d 采矿工程、紫金锌业乌拉根锌矿低品位废石综合回收利用技改项目、汇祥永金萨热克铜矿南矿带开发项目、乌恰县萨瓦亚尔顿金矿开发项目。

本工程为萨瓦亚尔顿金矿开采项目,生产能力为 180 万 t/a,加大了乌恰县金矿资源就地转化利用力度,推进了金矿开采和合作开发项目的建设,乌恰县萨瓦亚尔顿金矿开发项目为重点开发项目,因此本工程建设符合《克孜勒苏柯尔克孜自治州国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》中的相关要求。

3.5.2.3 与《新疆生态环境保护"十四五"规划》的符合性分析

根据 2022 年 1 月 14 日新疆维吾尔自治区人民政府发布的《新疆生态环境保护"十四五"规划》中对矿山开采的相关要求,本工程与其相符性如下:

	1人 3・3-2 別(選工,心)1つむ		
类别	规划要求	本工程情况	符合性
绿色矿山建设	全面推进绿色矿山建设,规范绿色矿山第三方评估,推广矿产资源节约与综合利用先进技术。	萨瓦亚尔顿金矿应按绿色矿山的 要求进行建设。	符合
大气环境	充分运用新型、高效的防尘、降尘、 除尘技术,加强矿山粉尘治理。	本项目露天开采时液压碎石机破碎采取雾炮进行降尘,并下开采矿石破碎工艺设置于井下,采用湿式凿岩、洒水降尘,破碎工序设布袋除尘器除尘,除尘效率不低于99%,最大程度减少粉尘排放。	符合
水环境	推进地表水与地下水协同防治。统 筹区域地表水、地下水生态环境监	本工程已委托编制人工阻隔措施, 设计采取修筑引水涵管、挡水坝、	符合

表 3.5-2 新疆生态环境保护"十四五"规划符合性

	管。以傍河型地下水饮用水水源为 重点,防范受污染河段侧渗和垂直 补给对地下水污染。加强化学品生 产企业、工业聚集区、矿山开采区 等污染源的地表、地下协同防治与	引流隧洞和盖板明渠,在矿建地表设施采用防渗措施,周围设置截洪 沟、拦洪坝等,减少对萨瓦亚尔顿 河及地下水的影响。	
	环境风险管控。		
土壤环境	防范工矿企业土壤污染。结合重点 行业企业用地土壤污染状况调查成 果,完善土壤污染重点监管单位名 录,探索建立地下水污染重点监管 单位名录,在排污许可证中载明土 壤和地下水污染防治要求。鼓励土 壤污染重点监管单位实施提标改 造。定期对土壤污染重点监管单位 和地下水污染重点监管单位周边土 壤、地下水开展监测。督促重点行 业企业定期开展土壤及地下水环境 自行监测、污染隐患排查。	本项目为金矿开采项目,不属于土壤污染重点监管单位,矿区占地范围内、外土壤污染物均满足筛选值标准,土壤环境良好。建设单位应采取防渗等措施防止开采活动对土壤及地下水的污染。	符合
风险	强化重点区域地下水环境风险管控。对化学品生产企业、工业集聚区、尾矿库、矿山开采区、危险废物处置场、垃圾填埋场等地下水污染源及周边区域,逐步开展地下水环境状况调查评估,加强风险管控。	矿山开采区拟实施 5 口监测井,分别位于矿区上游 1 个、下游和场地各 1 个,场地两侧各 1 个,并对地下水实行定期监测,建设单位对矿区内工业场地、排土场等设施采取防渗措施,防止开采活动对地下水的污染。	符合

综上,本项目的建设符合《新疆生态环境保护"十四五"规划》的相关规定。

3.5.2.4 与《新疆维吾尔自治区矿产资源总体规划(2021~2025 年)》的符合 性分析

根据《新疆维吾尔自治区矿产资源总体规划(2021~2025 年)》中的要求: 到 2035 年,矿产资源勘查开发支撑经济社会发展更加有力,矿产资源结构布局稳定成型,大中型矿山比例提高至 50%以上,矿业开发集聚效应、规模效应进一步显现,矿业高质量发展与经济社会发展协调一致,绿色勘查开采方式基本普及,矿山智能化水平全面提升,矿产资源管理和矿业权市场监管制度更趋完善,新疆矿业参与国内国际竞争新优势有效凸显,绿色、安全、创新、协调的矿产资源保 障体系基本建立。

——西南天山黑色、有色及贵金属勘查开发区。以铁、铜、铅、锌、金矿等矿产资源勘查开发为主,兼顾稀有金属勘查。加大铜、铅锌找矿力度,提交铜资源量 30 万吨。重点建设巴楚县瓦吉尔塔格钒钛磁铁矿、乌恰县乌拉根铅锌矿、萨热克铜矿、萨瓦亚尔顿金矿等矿山,提高开发利用水平,为克州铜铅锌开发利用深加工产业提供资源保障,加快乌恰县绿色矿业发展示范区建设。

本工程位于克孜勒苏柯尔克孜自治州乌恰县 305°方向直距 110km 处,位于西南天山南脉,属于《规划》中西南天山黑色、有色及贵金属勘查开发区的萨瓦亚尔顿金矿,符合《新疆维吾尔自治区矿产资源总体规划(2021~2025 年)》规划的相关要求。

3.5.2.5 与《新疆维吾尔自治区主体功能区规划》的符合性分析

《新疆维吾尔自治区主体功能区规划》中提出:主体功能区与能源和矿产资源开发的关系。一些能源和矿产资源富集的区域往往同时是生态脆弱或生态重要的区域,被划分为限制进行大规模高强度工业化城镇化开发的重点生态功能区或农产品主产区,并不是限制能源和矿产资源的开发,这类区域中的能源和矿产资源,仍然可以依法开发,资源开采的地点仍然可以定义为能源或矿产资源的重点开发基地,但应该按照该区域的主体功能定位实行"点上开发、面上保护"。

形成资源点状开发,生态面上保护的空间结构。针对阿尔泰山、塔里木盆地、准噶尔盆地等地的矿产资源富集区域的开发,要在科学规划的基础上,以点状开发方式有序进行,其开发强度控制在规划目标之内,尽可能减少对生态环境的扰动和破坏,同时加强对矿产开发区迹地的生态修复。

限制开发区域是指关系国家农产品供给安全和生态安全,不应该或不适宜进行大规模、高强度工业化城镇化开发的农产品主产区和重点生态功能区。限制开发区域分为两类:一类是农产品主产区,即耕地较多、农业发展条件较好,尽管也适宜工业化城镇化开发,但从保障国家农产品安全以及国家永续发展的需要出发,必须把增强农业综合生产能力作为发展的首要任务,从而应该限制大规模高强度工业化城镇化开发的地区;一类是重点生态功能区,即生态系统脆弱或生态功能重要,资源环境承载能力较低,不具备大规模高强度工业化城镇化开发的条

件,必须把增强生态产品生产能力作为首要任务,从而应该限制进行大规模高强 度工业化城镇化开发的地区。

禁止开发区域是指依法设立的各级各类自然文化资源保护区域,以及其他禁止进行工业化城镇化开发、需要特殊保护的重点生态功能区。国家层面的禁止开发区域包括国家级自然保护区、世界文化自然遗产、国家级风景名胜区、国家森林公园、国家地质公园。省级层面的禁止开发区域,包括省级及以下各级各类自然文化资源保护区域、重要水源地、重要湿地以及其他省级人民政府根据需要确定的禁止开发区域。

本工程为金矿开采项目,矿区位于乌恰县境内,矿区不涉及国家级自然保护区、世界文化自然遗产、国家级风景名胜区、国家森林公园、国家地质公园等禁止开发区域和其他限制开发区域,在矿区实施"点上开发、面上保护"的措施后,符合《新疆维吾尔自治区主体功能区规划》中的相关要求。

3.5.2.6 与《矿山生态环境保护与恢复治理技术规范(试行)》(HJ615-2013) 的符合性分析

萨瓦亚尔顿金矿矿区不在依法划定的自然保护区、风景名胜区、森林公园、饮用水水源保护区、文物古迹所在地、地质遗迹保护区、基本农田保护区等重要生态保护地以及其他法律法规规定的禁采区范围,项目开采符合相关主体功能区规划、生态功能区划,本工程正编制《新疆紫金黄金有限公司新疆萨瓦亚尔顿金矿开采工程矿产资源开发利用与生态保护修复方案》。环评要求建设单位及时进行编制,并按照方案内容对矿山实施"边开采、边复垦",故本工程符合《矿山生态环境保护与恢复治理技术规范(试行)》(HJ615-2013)的相关要求。

3.5.2.7 与《有色金属行业绿色矿山建设规范》(DZ/T0320-2018)的符合性分析

本项目参考《有色金属行业绿色矿山建设规范》(DZ/T0320-2018)中相关 要求的分析符合性见下表。

表 3.5-3 与《有色金属行业绿色矿山建设规范》的符合性分析表

	规范要求	本工程情况
绿色	采矿工艺要求:露天开采宜采用剥离-排	本项目为露天+地下开采矿山,采矿法包
开发	土-造地-复垦的一体化技术; 井下开采宜	括分台阶开采+无底柱分段崩落法。

	规范要求	本工程情况
	采用充填开采及减轻地表沉陷的开采技	
	术。	
	固体废物利用:废石等固体废弃物堆放应 符合相关规定。企业宜开展废石、尾矿中 有用组分回收和尾矿中稀散金属的提取	本项目废石堆放至排土场内,后期闭矿 后用于矿山生态恢复与土地复垦,可实
资源	与利用,以及针对废石、尾矿开展回填、 筑路、制作建筑材料等资源化利用工作。	现废石综合利用。
综合 利用	废水利用:采用先进的节水技术,建设规范完备的矿区排水系统和必要的水处理设施。采用洁净化、资源化技术和工艺合理处置矿井水。宜充分利用矿井水,选矿废水应循环重复利用。应设废气净化处理装置,净化后的气体应达到排放标准。	本项目矿井涌水用于生产、绿化、降尘、 选矿,不外排;生活污水用达标处理好 于矿区绿化,废水全部利用,利用率为 100%。
	建立矿山生产全过程能耗核算体系,通过 采取节能减排措施,控制并减少单位产品 能耗、物耗、水耗。"三废"排放符合生态 环境保护部门的有关标准、规定和要求。	本次评价要求矿山建立生产全过程能耗核算体系,通过采取节能减排措施,控制单位产品能耗、物耗、水耗,减少"三废"排放。本项目矿井涌水用于生产、绿化、降尘,不外排;生活污水用达标处理好于矿区绿化,废水全部利用,利用率为100%;项目运营期洒水、降尘,可最大程度减低废气排放。
节能 减排	废水排放:矿山应建立矿山废水处理系统,实现雨污分流、清污分流。排土场(排土场)等应建有雨水截(排)水沟,淋溶水经处理后回用或达标排放。	矿区生活污水采用地埋式一体化污水处理设施达标处理,达标后灌溉期用于矿山绿化和降尘。排土场、工业场地等建雨水截(排)水沟,淋溶水经处理后回用或达标排放。
	固体废弃物排放:优化采选技术与工艺,综合利用废石等固体废弃物。宜将矿山固体废弃物用作充填材料、建筑材料或进行二次利用等。露天矿剥离的表土应单独堆存,用于复垦。	本项目废石堆放至排土场内,后期闭矿 后用于矿山生态恢复与土地复垦,可实 现废石综合利用。露天矿剥离的表土单 独堆存在表土堆场,用于复垦

综上,本项目的建设符合《有色金属行业绿色矿山建设规范》(DZ/T0320-2018) 中的相关要求。

3.5.3 相关条例符合性分析

3.5.3.1 与《中华人民共和国河道管理条例》的符合性分析

根据国务院令第 698 号《中华人民共和国河道管理条例》(2018 年第四次修订),第二条:本条例适用于中华人民共和国领域内的河道(包括湖泊、人工水道、行洪区、蓄洪区、滞洪区)。根据现场勘查及相关资料显示,萨瓦亚尔顿河流经IV号矿带各矿体上盘,本工程开采方式为露天+地下开采,通过布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流改道,避开露采坑和南部排土场引至下游天然河道,采取人工阻隔方式将水体与开采活动隔绝,因此本工程的建设符合《中华人民共和国河道管理条例》。

3.5.3.2 与《新疆维吾尔自治区环境保护条例》(修订)的符合性分析

根据《新疆维吾尔自治区环境保护条例》第三十条中指出: "任何单位和个人不得在水源涵养区、饮用水水源保护区内和河流、湖泊、水库周围建设重化工、涉重金属等工业污染项目; 对已建成的工业污染项目, 当地人民政府应当组织限期搬迁"。本工程采矿工程不属于《关于进一步加强重金属污染防控的意见》中重点重金属(铅、汞、镉、铬、铊、锑、砷)工业污染项目, 矿区位于水土保持区, 不在水源涵养区、饮用水水源保护区内和湖泊、水库等范围内, 采取布置挡水坝将萨瓦亚尔顿河截流, 修建隧洞、引水涵管、盖板明渠进行河流改道, 符合《新疆维吾尔自治区环境保护条例》的相关要求。

3.5.3.3 与《新疆维吾尔自治区大气污染防治条例》的符合性分析

根据《新疆维吾尔自治区大气污染防治条例》(2019年1月1日实施)中 第四十四条:"矿山开采产生的废石、废渣、泥土等应当堆放到专门存放地,并 采取围挡、设置防尘网或者防尘布等防尘措施;施工便道应当硬化。

在采石、采砂和其他矿产资源开采过程中,或者在停办、关闭矿山前,采矿 权人应当整修被损坏的道路和露天采矿场的边坡、断面,恢复原有地貌,并按照 规定处置矿山开采废弃物,防止扬尘污染。"

(1) 本工程拟建 2 座排土场,分别堆放开采期产生的废石,按照本次评价要求,排土场将采取设置围挡、警示牌、防风抑尘网等措施。矿山开采完成后,

废石可用于采坑恢复,尽量减少地面塌陷,并对扰动土地进行建筑拆除、土地平整,覆土后恢复植被,最终恢复地形地貌景观及土地类型。

- (2)本工程施工道路均采用新建道路,矿区内车辆限速,减少扬尘产生,运营期采用施工道路进行矿石及物资运输,不再另建新路,减少对项目区土壤及生态环境的影响。
- (3)根据各矿体开采结束时间,遵循"边开采,边治理"原则进行采矿工业场地的防治工程,其地形地貌景观的防治工程为:将区内地面建筑设施全部拆除,可再利用材料外运,废弃物用于封堵各平硐口、风井口、竖井口,对场地及矿区道路进行平整处理,防止扬尘污染。

综上,本工程对污染物的防治措施符合《新疆维吾尔自治区大气污染防治条例》(2019年1月1日实施)的相关要求。

3.5.3.4 与《新疆维吾尔自治区矿产资源管理条例》的符合性分析

根据《新疆维吾尔自治区矿产资源管理条例》中第五条指出:"勘查、开采矿产资源,应当加强水土保持、土地复垦和环境保护工作,加强地质环境保护、监测和地质灾害的整治工作"。

第三十五条提出: "开采矿产资源,必须遵守国家、自治区土地、草原、森林、环保、文物保护、水法等法律、法规。开采矿产资源造成矿山地质环境、生态环境破坏的,应当治理恢复;给他人生产、生活造成损害的,依法予以补偿,并采取必要的补救措施。"

本工程属于金矿开采项目,对矿山在开采过程中产生的生态环境、土地等破坏,按照"边开采,边治理"的方针,严格落实矿山生态环境治理恢复方案,要做到预防为主,针对存在的问题,制定出预防措施,对生产中出现的问题要及时采取相应的措施予以解决,达到防灾、减灾的目的。因此,本工程建设符合《新疆维吾尔自治区矿产资源管理条例》的项目要求。

3.5.5 与《新疆维吾尔自治区重点行业环境准入条件(修订)》 的符合性分析

《新疆维吾尔自治区重点行业环境准入条件(修订)》对金属矿采选行业的 选址及污染防治进行了要求,本工程与环境准入条件的符合性分析见表 3.5-4。

表 3.5-4 本工程与环境准入条件符合性分析表

项目	准入条件要求	本工程情况	符合性
	拟进行改建、扩建的项目,如现有项目	本项目不涉及居民搬迁,矿区存	
24 /4	或设施未执行"三同时"制度,未按照	在的问题均已提出明确的、针对	
总体	要求实施居民搬迁或存在环境问题的,	性的整改措施和整改计划,并要	符合相
要求	必须在先行解决全部遗留环境问题后方	求建设单位对现有环境问题整改	关要求
	可实施。	完毕后,再对新建工程进行实施。	
		本工程不在铁路、高速公路、国	
	铁路、高速公路、国道、省道等重要交	道、省道等重要交通干线范围内,	
	通干线两侧 200 米范围以内(禁止在铁	项目周边无居民聚集区等; 但萨	
	路、国道、省道两侧的直观可视范围内	瓦亚尔顿河由北向南自IV号矿带	
	进行露天开采),重要工业区、大型水	中部穿过,为I类水体。本工程	
	利工程设施、城镇市政工程设施所在区	已委托编制人工阻隔方案,采取	
	域,军事管理区、机场、国防工程设施	布置挡水坝将萨瓦亚尔顿河截	
	圈定的区域,居民聚集区 1000 米以内、	流,修建隧洞、引水涵管、盖板	
 选址	伊犁河、额尔齐斯河等重要河流源头区、	明渠进行河流改道,在基建期组	符合相
旭址	水环境功能区划为Ⅰ、Ⅱ类和具有饮用	织实施,以减少对水体的影响。	关要求
	功能的Ⅲ类水体岸边 1000 米以内, 其它	此外,各场地地面进行防渗硬化、	
	Ⅲ类水体岸边 200 米以内,禁止新建或	场地四周设挡水坝、上游设截洪	
	改扩建金属矿采选工程,存在山体等阻	沟。人工阻隔措施可以有效防止	
	隔地形或建设人工地下水阻隔设施的,	对水体造成污染影响,在人工阻	
	可根据实际情况,在确保不会对水体产	隔设计方案实施的前提下, 可适	
	生污染影响的前提下适当放宽距离要	当放宽距离要求,能够满足《新	
	求。	疆维吾尔自治区重点行业环境准	
		入条件(修订)》的要求。	
	矿井涌水、矿坑涌水用于生产工艺、降	1.矿坑涌水絮凝+沉淀处理后全	
	尘、绿化等,综合利用率应达到85%以	部用于露天及井下生产用水、选	
	上,若行业标准高于85%,按行业标准	矿用水、湿式凿岩和洒水降尘等,	符合相
	执行。生活污水排放执行《污水综合排	回用率 100%。2.生活污水依托选	关要求
	放标准》(GB8978)。处理达标的废水	矿厂地埋式一体化生活污水处理	
污染	根据当地实际情况用于绿化等。	装置处理后综合利用。	
防治	采选活动矿石转运、破碎、筛分等粉尘	采矿活动矿石转运过程中产生的	
P) 1 1 L	产生工序,应配备抑尘、除尘设备,除	粉尘,配备洒水抑尘,有效控制	符合相
	全效率不低于 99%,有效控制无组织粉	无组织粉尘排放。环评要求本工	大要求 关要求
	全排放。 全排放。	程新建井下破碎站建设除尘系	八女小
	土川瓜。	统,除尘效率为99%以上。	
	噪声排放执行《工业企业厂界环境噪声	经预测, 本工程新建后噪声排放	符合相
	排放标准》(GB12348-2008)。	符合《工业企业厂界环境噪声排	关要求

项目	准入条件要求	本工程情况	符合性
		放标准》(GB12348-2008)。	
	废石综合回用率达到 55%以上。一般固		
	体废物应根据《一般工业固体废物贮存、		
	处置场污染控制标准》(GB18599-2001)	1.本工程产生的废石堆存于排土	
	及修改单进行管理,属危险废物的依法	场,一部分用于筑路及排土场护	
	按危险废物相关要求进行管理,其贮存	坡,待开采结束后用于矿坑恢复。	
	设施须符合《危险废物贮存污染控制标	2.生活垃圾定期拉运至乌恰县生	符合相
	准》(GB18597-2001)。生态环境良好	活垃圾填埋场。	关要求
	区域,矿区生活垃圾拉运至就近城镇统	3.废机油暂存至危废暂存间,交	
	一处置。生态环境质量一般区域可就地	有危废处置资质的公司进行处	
	防渗无害化处置,处理率达 100%,填埋	置。	
	地点及污染防治措施报当地环保主管部		
	门备案。		
	矿山生态环境保护和恢复要达到《矿山	本环评要求矿山编制《生态环境	が 人 和
	生态环境保护与恢复治理技术规范(试	保护与恢复治理方案》并组织实	符合相
	行)》(HJ651-2013)的相关要求。	施。	关要求

根据《新疆维吾尔自治区重点行业环境准入条件(修订)》中的关于金属矿 采选行业技术要求。本工程基建期实施人工阻隔方案,减少对水体的影响,选址 与空间布局符合国家、自治区主体功能区规划、国家和自治区矿产资源勘探开发 规划、城乡总体规划和土地利用规划等相关规划要求,项目选址不属于禁止开发 区、限制开发区内。本工程矿坑涌水用于湿式凿岩和洒水降尘、选厂用水,生活 污水依托选矿厂地埋式一体化污水处理设施处理后综合利用,综合利用率达到 100%,符合回用率要求。本工程各项指标符合《新疆维吾尔自治区重点行业环 境准入条件(修订)》中的相关要求。

3.5.6 与"三线一单"符合性分析

根据《新疆维吾尔自治区"三线一单"生态环境分区管控方案》及《克孜勒 苏柯尔克孜自治州"三线一单"生态环境分区管控方案》中的主要目标:到 2025 年,全区生态环境质量总体改善,环境风险得到有效管控。建立较为完善的生态 环境分区管控体系与数据信息应用机制和共享系统,生态环境治理体系和治理能 力现代化取得显著进展。

(1) 生态保护红线

按照"生态功能不降低、面积不减少、性质不改变"的基本要求,对规定的生态保护红线实施严格管控,保障和维护国家生态安全的底线和生命线,根据自治区划定的环境管控单元,克孜勒苏柯尔克孜自治州共划为84个管控单元,其中优先保护单元18个,重点管控单元62个,一般管控单元4个。其中,乌恰县共31个管控单元,优先保护单元5个,重点管控单元25个,一般管控单元1个。

优先保护单元主要包括生态保护红线区和生态保护红线区以外的饮用水水源保护区、水源涵养区、防风固沙区、土地沙化防控区、水土流失防控区等一般生态空间管控区。生态保护红线区执行生态保护红线管理办法的有关要求;一般生态空间管控区应以生态环境保护优先为原则,开发建设活动应严格执行相关法律、法规要求,严守生态环境质量底线,确保生态功能不降低。

重点管控单元主要包括主要包括城镇建成区、工业园区和开发强度大、污染物排放强度高的工业聚集区等。要着力优化空间布局,不断提升资源利用效率,有针对性地加强污染物排放管控和环境风险防控,解决生态环境质量不达标、生态环境风险高等问题。

一般管控单元主要包括优先保护单元和重点管控单元之外的其他区域。一般管控单元以沙漠、荒漠、戈壁、一般农业生产等为主的管控单元,主要落实生态环境保护基本要求,推动区域环境质量持续改善。

本工程不在划定的红线范围内,采矿区东侧距离天山南脉水源涵养生态保护 红线区最近 500m。本工程与红线位置关系见图 3.5-1,与克州环境管控单元分类 图见图 3.5-2。

(2) 环境质量底线

环境质量底线就是只能改善不能恶化。大气环境质量底线就是在符合大气环境区域功能区划和大气环境管理的基础上,确保大气污染物排放不对区域功能区划造成影响,污染物排放总量低于大气环境容量。

本工程在运营期大气污染物全部实现达标排放,预测落地浓度叠加现状结果 后满足相应标准因此本工程的建设不会对区域环境质量造成大的影响。

本工程矿坑和矿井涌水全部回用于生产,生活污水依托配套选矿厂地埋式一体化设施处理后综合利用;不直接排入外环境水体,不会影响区域水环境质量。

本工程产生的废石用于矿山复垦,生活垃圾拉运至乌恰县生活垃圾填埋场进行处理,固废妥善处理,不乱排乱放,危险废物委托有危废处置资质的单位处置。

上述措施能确保拟建项目污染物对环境质量的影响降到最小,不突破所在区域环境质量底线。

(3) 资源利用上线

本工程为金矿开采项目,在开发时严格按照开发利用方案及可研设计进行开 采,不过度开采,不对资源的过度开发,符合资源利用的政策导向。

(4) 环境准入清单

根据克孜勒苏柯尔克孜自治州总体管控要求及一般管控单元分类管控要求, 本工程为有色金属采矿业,属于乌恰县一般管控单元(ZH65302430001),与乌恰县一般管控单元的符合性分析见表 3.5-5。与自治区七大片区天山南坡管控要求的符合性分析见表 3.5-6。

表 3.5-5 与乌恰县一般管控单元的相符性

管	控类别	管控要求	本工程情况
乌恰县一	空间布	【1.1-1】限制进行大规模高强度工业化城镇化开发,严格控制金属冶炼、石油化工、焦化等"高污染、高环境风险产品"工业项目,原则上不增加产能,现有"高污染、高环境风险产品"工业项目持续削减污染物排放总量并严格控制环境风险。原则上禁止建设涉及一类重金属、持久性有机污染物排放的工业项目。建立集镇居住商业区、耕地保护区与工业功能区等集聚区块之间的防护带。 【1.1-2】严格执行畜禽养殖禁养区规定,根据区域用地和消纳水平,合理确定养殖规模。加强基本农	本工程为金矿开采项目,矿区开发符合自治区及地州有关矿产资源规划,对矿山进行合理开采,对周围自然植被影响较小。本工程建设范围内占地主要为裸岩石砾地及低覆盖度草地,不存在基本农田保护
般	局约束	田保护,严格限制非农项目占用耕地。	☒ ∘
管 控 单 元		【1.2-1】严格水域岸线用途管制,新建项目一律不得违规占用水域,土地开发利用应按照有关法律法规和技术标准要求,留足河道、湖泊的管理和保护范围,非法挤占的应限期退出。	本工程已委托编制人 工阻隔方案,采取布 置挡水坝将萨瓦亚尔 顿河截流,修建隧洞、 引水涵管、盖板明渠 进行河流改道,在基 建期组织实施,以减 少对水体的影响。此 外,各场地地面进行

管控类别	管控要求	本工程情况
		防渗硬化、场地四周
		设挡水坝、上游设截
		洪沟。人工阻隔措施
		可以有效防止对水体
		造成污染影响。
	【1.3-1】加强相关规划和项目建设布局水资源论证	
	工作,国民经济和社会发展规划以及城市总体规划	本工程为金矿开采项
	的编制、重大建设项目的布局,应充分考虑当地水	目,矿区开发符合自
	资源条件和防洪要求。	治区及地州有关矿产
	【1.3-2】重大项目原则上布局在重点开发区,并符	资源规划,对矿山进
	合城乡规划和土地利用总体规划。鼓励发展节水高	行合理开采, 合理利
	效现代农业、低耗水高新技术产业以及生态保护型	用水资源,本工程产
	旅游业,严格控制缺水地区和敏感区域高耗水、高	生的矿坑和矿井涌水
	污染行业发展。	均回用于地表和井下
	【1.3-3】水资源论证不过关的用水项目一律不予批	湿法凿岩、洒水降尘
	准,对取用水总量已达到或超过控制指标的地区,	及配套选矿厂的选矿
	暂停审批其建设项目新增取水许可。具备使用再生	用水,不外排,提高
	水条件但未充分利用的钢铁、化工等项目,不得批	废水综合利用率。
	准其新增取水许可。	
	【1.4-1】在河道管理范围线以外1千米以内,河流	
	陆域沿岸纵深 50 米内,从严控制矿产资源开发活动,	
	确保区域地表水环境质量全部达到功能目标。	
	【1.4-2】水质不能稳定达标的区域原则上不允许建	 本工程为金矿开采项
	设新增相应不达标污染物指标排放量的工业项目,	目,不属于水污染风
	已超过承载能力的地区要实施水污染物削减方案,	险高的行业,不设置
	加快调整发展规划和产业结构。	 污水排放口,废(污)
	【1.4-3】禁止在地下水源区建设尾矿库、危险废物	水处理后回用。
	处置设施和造纸、重化工等水污染风险高的企业,	
	禁止垃圾堆放和填埋,禁止设置各类污水排放口和	
	渗坑,禁止建设以农业灌溉为目的规模化地下水开 	
	发项目。	
	【1.4-1】将建设用地土壤环境管理要求纳入城市规	本工程为金矿开采项
	划和供地管理,土地开发利用必须符合土壤环境质	目,矿区开发符合自
	量要求。对暂不开发利用或现阶段不具备治理修复	治区及地州有关矿产
	条件的污染地块,由各县(市)人民政府组织划定	资源规划,对矿山进
	管控区域,设立标识,发布公告,开展土壤、地表	行合理开采,对周围
	水、地下水、空气环境监测,发现污染扩散的,有	自然植被影响较小。

管控类别	管控要求	本工程情况
	关责任主体要及时采取污染物隔离、阻断等环境风	本工程建设范围内占
	险管控措施。对拟开发利用的,要逐步开展治理与	地主要为裸岩石砾地
	修复,符合相应规划用地土壤环境质量要求的地块,	及低覆盖度草地,不
	方可进入用地程序。	存在基本农田保护区
	【1.4-2】对基本农田实行严格保护,确保其面积不	和其他农用地。矿山
	减少、土壤环境质量不下降,除法律规定的重点建	储油区采取防渗措
	设项目选址确实无法避让外,其他任何建设不得占	施,保护矿区土壤环
	用。	境, 定期监测。
	【1.4-3】未利用地拟开发为农用地的,各县(市)	
	人民政府要组织开展土壤环境质量状况评估; 不符	
	合相应标准的,不得种植食用农产品。	
	【1.4-4】科学划定畜禽养殖禁养区、限养区。做好	
	畜禽养殖小区建设备案管理工作,执行好新建、改	
	建、扩建规模畜禽养殖场(小区)建设项目环境影	
	响评价和"三同时"制度,确保畜牧业发展符合区域环	
	境功能定位和环境保护要求。	
	【1.4-5】加强对本地区矿山、油气等矿产资源开采	
	活动影响区域内未利用地的环境监管,发现未利用	
	土壤污染问题的,要坚决进行查处,并及时督促有	
	关企业采取有效防治措施消除或减轻污染。	
	【1.4-6】鼓励工业企业"退城入园",集聚发展,提高	
	土地集约利用水平,减少土壤污染。严格执行相关	
	行业企业布局选址要求,禁止在居民区、学校、医	
	疗和养老机构等周边新建土壤环境重点监管行业企	
	业;结合推进新型城镇化、产业结构调整和化解过	
	剩产能等,有序搬迁或依法关闭对土壤造成严重污	
	染的现有企业。结合区域功能定位和土壤污染防治	
	需要,科学布局生活垃圾处理、危险废物处置、废	
	旧资源再生利用等设施和场所,合理确定畜禽养殖	
	布局和规模。	
	【2.1-1】落实污染物总量控制制度,根据区域环境	本项目不设置总量控
	质量改善目标,削减污染物排放总量。加强农业面	制指标。矿区加强开
污染物	源污染治理,严格控制化肥农药施加量,逐步削减	采扬尘控制措施,减
排放管	农业面源污染物排放量。	少污染物排放。
控	【2.2-1】全面加强秸秆禁烧管控,强化各级政府秸	
	秆禁烧主体责任,充分发挥网格化监管作用,在初	本项目不涉及。
	春、秋收和夏收阶段开展秸秆禁烧专项巡查。	

管控类别	管控要求	本工程情况
	【2.2-2】推进农业大气氨污染防治,加强种植业氨	
	排放控制,调整氮肥结构,改进施肥方式;加强养	
	殖业氨排放治理,鼓励农村地区实施规模化畜禽养	
	殖。	
	【2.3-1】根据农村地理环境和人口聚集程度,因地	
	制宜采取集中与分散相结合的方式,实施农村生活	
	污水处理:将城镇周边村庄生活污水纳入城镇污水	
	处理管网收集处理; 距城镇较远、人口居住集中的	
	村庄,采取统一新建污水处理设施及配套管网的方	本项目废(污)水处
	式收集处理; 地形条件复杂、居住相对分散的村庄,	理达标后回用,不外
	分区域采取大集中、小集中与分散相结合的灵活方	排。
	式,建设污水处理设施进行收集处理。	111.0
	【2.3-2】严格灌区水盐管理制度,敏感区域和大中	
	型灌区,应建设生态沟渠、污水净化塘、地表径流	
	集蓄池等设施,净化农田排水及地表径流,避免上	
	灌下排恶性循环,严禁直接进入河道污染河流水质。	
	【2.4-1】加大农村生活垃圾收集、转运及处理等配	
	套设施建设,鼓励有条件的县(市)推行适合农村	
	特点的垃圾就地分类和资源化利用。	
	【2.4-2】合理选择改厕模式,稳步推进乡村户用卫	本项目采取生活垃圾
	生厕所建设和改造,实施厕所粪污无害化处理和资	收集措施,并定期送 收集措施,并定期送
	源化利用。新建农村安居房原则上要配套建设无害	往生活垃圾填埋场处
	化卫生厕所,切实保证农村供水和排水相关配套设	置。
	施建设以及运行达到国家标准,积极引导有条件的	<u></u> ,
	农牧民家庭改造现有旱厕,人员较为集中、经济条	
	件达不到的乡镇、行政村,可试点配套建设水冲式	
	公共厕所。	
	【2.5-1】排放重点污染物的建设项目,在开展环境	
	影响评价时,要开展土壤环境风险评估,并提出防	
	范土壤污染的具体措施; 需要建设的土壤污染防治	
	设施,要与主体工程同时设计、同时施工、同时投	本项目废(污)水处
	产使用。	理达标后回用,不外
	【2.5-2】依法严查向沙漠、滩涂、盐碱地、沼泽地	排。本项目不排放毒
	等非法排污、倾倒有毒有害物质的环境违法行为。	有害物质。
	【2.5-2】开展油(气)资源开发区土壤环境污染专	
	项调查工作,加强油(气)田废弃物的无害化处理	
	和资源化利用,严防油(气)田勘探、开发、运行	

管控类别	管控要求	本工程情况
	过程中以及事故排放产生的废弃物对土壤的污染。 开展油(气)资源开发区历史遗留污染场地治理。	
环境风	【3.1-1】加强生态公益林保护与建设,防止水土流失。禁止向农用地排放重金属或者其他有毒有害物质含量超标的污水、污泥,以及可能造成土壤污染的尾矿、矿渣等。加强农田土壤、灌溉水的监测及评价,对周边或区域环境风险源进行评估。	本项目不排放毒有害 物质,本项目废石堆 放在排土场内。
险 管控	【3.2-1】盖孜河、克孜勒苏河、恰克马克河和托什 干河干流沿岸,要严格控制有色金属冶炼等项目环 境风险,合理布局生产装置及危险化学品仓储等设 施。	本项目不涉及。
	【4.1-1】实行水资源消耗总量和强度双控,推进农业节水,提高农业用水效率。优化能源结构,加强能源清洁利用。	本工程产生的矿坑和 矿井涌水均回用于地 表和井下湿法凿岩、 洒水降尘及配套选矿 厂的选矿用水,不外 排,提高废水综合利 用率。
资源利 用效率	【4.2-1】全面推进秸秆综合利用,鼓励秸秆资源化、饲料化、肥料化利用,推动秸秆还田与离田收集。	本项目不涉及。
	【4.3-1】新建、改建、扩建项目用水要达到行业先进水平,节水设施应与主体工程同时设计、同时施工、同时投运。 【4.3-2】严格控制开采深层承压水,矿泉水开发应严格实行取水许可和采矿许可。实行地下水开采量与水位双控制。	本工程产生的矿坑和 矿井涌水均回用于地 表和井下湿法凿岩、 洒水降尘及配套选矿 厂的选矿用水,不外 排,提高废水综合利 用率。

表 3.5-6 与自治区七大片区天山南坡管控要求的相符性

片区	发展定位 特征		问题	管控重点	本工程情况
	建设一批	自然生	环境承载力	从协调经济发展	本工程产生废水主要为
	带动南疆	态环境	与日益增长	和生态环境保护	矿坑、矿井涌水和生活污
天山	社会经济	脆弱,草	的发展需求	之间关系角度出	水, 矿坑、矿井涌水经处
南坡	发展的区	原、水资	矛盾日益突	发,改善生态环	理后用于地表和井下凿
片区	域性中心	源、矿产	出,污染减	境质量,逐步提	岩、洒水降尘、配套选矿
	城市和绿	资源较	排和生态环	高水资源利用效	厂选矿用水等,生活污水
	洲城镇组	丰富。	境保护压力	率,制定更为合	依托配套选矿厂地埋式

群。	较大。	理的污染物排放	一体化污水处理设施处
		管控要求。	理后综合利用,均不外
			排,因此大大提高了水资
			源的利用效率。

萨瓦亚尔顿金矿位于乌恰县境内,根据《新疆维吾尔自治区 28 个国家重点生态功能区县(市)产业准入负面清单(试行)》可知,对于乌恰县金矿采选管控要求为不得在沙尘源区、沙尘暴频发区布局,仅限布局在不破坏草原等生态环境的区域;禁止露天开采;新建项目规模不得低于 100 万吨/年,对现有未达到100 万吨/年开采规模的企业应在 2019 年 12 月 31 日前完成升级改造;新建项目清洁生产达到国内先进水平,现有未达到国内先进水平企业的应在 2019 年 12 月 31 日前完成升级改造;推进绿色矿山建设,达到绿色矿山标准。

根据《新疆维吾尔自治区 28 个国家重点生态功能区县(市)产业准入负面清单(试行)》,乌恰县位于塔里木河荒漠化防治生态功能区,其类型为防风固沙型。根据《关于乌恰县萨瓦亚尔顿金矿 IV 号主体矿区域生态环境功能区有关情况的报告》,本项目位于自治区主体功能区规划中的水土保持区内。根据自治区水利厅文件《关于印发新疆维吾尔自治区级水士流失重点预防区和重点治理区复核划分成果的通知》(新水水保【2019】4号),本项目所在乌恰县不在上述自治区级水土流失重点预防区和重点治理区范围内。因此,本项目所在区域属于水土保持一般区域,不在重点生态功能区范围内,本项目进行露天+地下联合开采不违反《新疆维吾尔自治区 28 个国家重点生态功能区县(市)产业准入负面清单(试行)》的相关要求。

本工程采用先进的设备,工艺设计中采用节能工艺,对区域资源的使用影响较小,因此本工程符合"三线一单"中的相关规定。

3.6 清洁生产水平分析

3.6.1 清洁生产评价

清洁生产是对产品和产品的生产过程采用预防污染的策略来减少污染物的产生。它是一种新的创造性的思想,将整体预防的环境战略持续应用于生产过程、产品和服务中,以增加生态效益和减少对人类及环境的风险。

本工程按照《黄金行业清洁生产评价指标体系》(2016年第21号)进行

分析。该标准根据当前的行业技术、装备水平和管理水平而制订,共分为三级, 一级代表国际清洁生产领先水平,二级代表国内清洁生产先进水平,三级代表国 内清洁生产一般水平。

3.6.2 指标选取

根据清洁生产的一般要求,清洁生产指标原则上分为装备要求、资源能源利用指标、废物回收利用指标、环境管理要求等。根据黄金矿采选行业的特点,本环评将清洁生产指标分为即生产工艺装备指标、资源能源消耗指标、资源综合利用指标、污染物产生指标、生态环境保护指标、清洁生产管理指标。具体内容见表 3.6-1~3.6-2。

表 3.6-1 黄金采矿 (露天开采) 企业清洁生产评价指标体系

人名第一人名第一人名第一人名第一人名第一人名第一人名第一人名第一人名第一人名第一									
序号	一级指标 指标项	一级指标权 重值	二级指标指标项	单位	二级指标分 权重值	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	本项目
1			采矿工艺技术		0.35		5和汽车运输。 优先采用国	根据矿石赋存条件、地质条件 和经济合理性,选择可行的采 矿工艺	II级
2	生产工艺 及装备指 标	0.20	生产装备		0.35		在开采技术条件允许情况 下,采用采用大型化、机 械化的生产设备。采用液 压等设备穿孔		II级
3			环保措施或设施、设备配备		0.30		R坑水处理、降尘、减震网 设备。环保措施有效,设施	锋噪等污染防治措施或配备相应 拖、设备稳定运行	I级
4	资源能源	0.20	金矿开采单位产品能源消耗*	kgce/t 金 矿石	0.80	≤0.5	≤0.9	≤1.3	II级
5	消耗指标	0.20	单位产品取水量	m³/t 金 矿石	0.20	≤0.05	≤0.08	≤0.10	II级
6	资源综合	0.20	开采回采率*	%	0.70	≥95	≥92	≥90	I 级
7	利用指标	0.20	废石综合利用率	%	0.30	≥5.0	≥3.0	≥2.0	I 级
8	污染物产 生指标	0.10	作业场所粉尘浓度	mg/m ³	1.00	≤2.0	≤3.0	≤4.0	II级
9			排土场复垦率ª	%	0.30	≥90	≥85	≥75	II 级
10	生态环境	0.20	矿区绿化覆盖率	%	0.30	≥90	≥80	≥70	II 级
11	保护指标	0.20	采坑生态修复		0.40	制定露天采坑生态景观再造 规划 b,并按规划实施	制定露天采坑生态修	多复规划°,并按规划实施	II级
12	清洁生产 管理指标	0.10	티지(아 A 신) 미구 + 기 나			《黄金行业清洁生产评价指标	示体系》表 4-9		II级

a 排土场复垦率由于废石全部得到综合利用而未设排土场的矿山,复垦率按 100%计。

b 露天采坑生态景观再造规划指矿山根据自身的实际情况,结合当地生态环境状况和经济、社会、文化等需求,对开采完毕后形成的露天采坑,进行具有社会价值、经济价值及文 化价值的自然景观、经济景观和人文景观再造建设所制定的计划。

c 露天采坑生态修复规划指矿山根据自身的实际情况,结合当地生态环境状况和经济发展需求,对露天开采完毕后形成的采坑,进行生态修复所制定的计划。 标注*的指标为限定性指标。

表 3.6-2 黄金采矿(地下开采)企业清洁生产评价指标体系

序号	一级指标 指标项	一级指标权 重值	二级指标指标项	单位	二级指标分 权重值	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	本项目	
1	生产工艺 及装备指 标	0.35	采矿工艺技术		0.25	采用充填法开采,优先采用 国家鼓励类技术	根据矿石赋存条件、地质 条件和经济合理性,选择 最适合的采矿工艺。优先 采用充填法或空场法开采	根据	II 级	
2			生产装备		0.25	采用机械化的生产设备。优 先采用无轨开拓	优先采用机械化的生产设 备	采用适合的一般生产设备	II级	
3			采空区处理		0.40	及时处理采空区,优先采用废石、尾矿等进行井下充填。采用适合的方法或措施,及时 优先采用高浓度全尾砂充填技术 处理采空区			II 级	
4			环保措施或设施、设备配备		0.10	采矿生产全过程采取相应的矿井水处理、降尘、减震降噪等污染防治措施或配备相应 的环保设备,环保措施有效,设施、设备稳定运行			I级	
5	资源能源 消耗指标	0.20	金矿开采单位产品能源消 耗*	kgce/t 金 矿石	0.80	符合《黄金行业清洁生产评价指标体系》附录 B.1 GB 32032 的要求			II 级	
6			单位产品取水量	mg/t 金 矿石	0.20	≤0.3	≤0.4	≤0.5	II级	
7	资源综合 利用指标 0.20	开采回采率*	%	0.70	开采回采率指标根据具体情况,按附录 C 执行			I 级		
8		0.20	废石综合利用率 a	%	0.30	≥80	≥50	≥30	II级	
9	污染物产 生指标	0.05	采矿作业场所粉尘浓度	mg/m ³	1.00	≤1.0	≤2.5	≤4.0	II级	
10	生态环境 保护指标	0.10	排土场复垦率	%	0.30	≥90	≥85	≥75	II 级	
11		0.10	矿区绿化覆盖率	%	0.40	≥90	≥80	≥70	II 级	
12	清洁生产 管理指标	0.10		详见《黄金行业清洁生产评价指标体系》表 4-9						

a 废石不出井的企业,废石综合利用率按 100%计。

标注*的指标为限定性指标。

3.6.3 项目清洁生产指标分析

本项目属于新建项目,将其相关指标与限定性指标进行对比,均符合 II 级限定性指标。根据《黄金行业清洁生产评价指标体系》评价方法,计算萨瓦亚尔顿金矿综合评价指数得分大于 85 分,因此判定新疆萨瓦亚尔顿金矿采矿工程的清洁生产水平为 II 级,即国内清洁生产先进水平。

(1) 装备要求指标

本工程露天+地下开采主要生产设备大部分为国产定型设备,及矿山开采通用设备,主要生产设备无国家明令淘汰的项目。矿山装备水平为国内同行业水平,均达到国内清洁生产先进水平。企业积极建设清洁生产,在选购设备时,采用国际先进的凿岩效率较高、配有除尘净化装置的凿岩台车,使清洁生产达到国内先进水平。

(2) 资源利用指标

1) 回采率

矿石开采量为 180 万 t/a,回采率 92%,清洁生产水平较高,均达到国内清洁生产先进水平,资源利用率高。

2) 耗电水平

露天采矿用电单耗为 6.99kW·h/t, 地下采矿用电单耗为 18.39kW·h/t, 达到国内清洁生产先进水平。

(3) 废物回收利用指标

项目矿坑和矿井涌水,经沉淀后回用于地表和井下生产降尘及选矿用水等,生活污水经矿山地埋式一体化污水处理设施处理后用于矿山绿化,不外排。生活垃圾集中收集,定期运至乌恰县生活垃圾填埋场填埋处理。

矿体开采期间产生的废石用于筑路及采坑治理。矿山固废的处理与处置遵循着"三化"原则,即无害化、减量化、资源化,而矿山固废处理的关键是资源综合利用。分析认为项目废物综合利用率较高,清洁生产指标等级为二级。

(4) 环境管理要求指标

矿山应建立完整的环境管理体系,建立以矿长为负责人的整套环境管理体系,设置3名兼职环境管理人员,随时监督矿区环境保护措施落实情况,随时向矿长

回报环保工作情况,保证矿区环保工作的顺利开展和持续。清洁生产等级为二级。

3.6.4 清洁生产的措施和建议

根据清洁生产审计的原则,我们对拟建项目生产全过程从工艺装备要求、资源能源利用指标、废物回收利用指标和环境管理要求四个重要环节进行了初步的清洁生产预审计,根据预评价结果,对其中一些环节的清洁生产潜力提出建议:

- (1) 采用先进的工艺设备、先进的开采工艺,提高资源回采率和劳动生产率。
- (2)根据矿产储存情况和采矿工艺特点,选择恰当的采矿方法,降低矿石 贫化率,提高回采率,尽可能地减少废石产生量。
- (3)各岗位操作规程和设备检修制度完善,设有专人严格监督执行情况,设备运转完好连续,对生产过程中产生的粉尘有相应的控制措施,并满足规定要求。
- (4) 落实固体废物防治措施,采矿产生的废矿石全部排入规划的排土场,做好排土场的管理。
- (5)提高设备生产率,对主要工作岗位进行节能培训,提高操作水平,建立完善节能的奖惩制度。
- (6)清洁生产涉及企业生产、技术和管理的各个方面,需要全员参与,建议在全公司开展全员节能、降耗、减污、增效等清洁生产合理化建议活动,并制订切实可行的激励手段,鼓励员工提出合理化建议,组织力量研究、实施职工的合理化建议,争取尽快取得清洁生产成效,同时对职工进行清洁生产宣传教育和操作培训,提高员工的清洁生产意识和操作水平。

3.7 总量控制

根据《关于印发新疆维吾尔自治区加强涉重金属行业污染防控工作方案的通知》,金矿采选不属于重金属行业,本工程原矿石鉴定涉重金属为微量,可不申请重金属总量指标。

4环境现状调查与评价

4.1 区域自然环境概况

4.1.1 地理位置

乌恰县位于北纬 39°24′-40°17′、东经 73°40′-75°45′之间,在新疆维吾尔自治区克孜勒苏柯尔克孜自治州西北部,位于中国的最西端。县境东接阿图什市,东南与喀什市和疏附县相邻,西南与阿克陶县毗邻,西部和北部与吉尔吉斯斯坦接壤,边境线长 470 公里。乌恰县东西长 180 公里,南北宽 106 公里,行政区域面积 22000 平方千米。

萨瓦亚尔顿金矿区位于我国西北边陲,濒临国界线,行政区划隶属于新疆克 孜勒苏柯尔克孜自治州乌恰县乌鲁克恰提乡。矿区位于乌恰县 305°方向直距 110km,矿区南距乌鲁克恰提乡约 28km,从乌鲁克恰提乡至矿区有 43km 简易公路。矿区内交通条件较好。矿区地理坐标(54 坐标): 东经 74°15′45″~74°19′45″,北纬 40°03′30″~40°06′45″,中心地理坐标(54 坐标): 东经 74°17′54″,北纬 40°05′28″。项目地理位置见图 4.1-1。

萨瓦亚尔顿金矿东南侧 17km 为年产 60 万吨克里多铁矿; 东侧 12km 为 5 万吨/年露天开采大红山铁矿; 东侧 25km 为 5 万吨/年汇祥永金铜矿。

4.1.2 地形地貌

乌恰县山地面积较大,主要分布于该区域的北、西、南三面。有高山、中山和低山。乌恰县境内的麦丹他乌—吐尔尕特山,由乌恰县北部向东北方向延伸,与阿图什市的喀拉铁克山相接,海拔 5000m 左右。帕米尔高原雄据州境以西,从克孜勒苏河以南至库山河北的高山纽结体。最高处海拔 7719m,山顶常年积雪,山间有冰川下延。西昆仑山山地,从库山河以南至叶尔羌河以北的大片山地,最高海拔不到 5000m,属中高山。中低山主要有阿图什境中部的阿克塔拉—塔什哈克一线呈东北走向的中山,海拔高度 2500~3200m 左右。西起乌恰县南部,东与阿克苏地区的西柯坪山相接的阿图什背斜山地,海拔 1700~3070m 的低山。西起乌恰县南部明尧洛,东至阿图什市库木沙克的喀什背斜,海拔仅 1500~

2443m 的低山。西昆仑山北坡的海拔 3000~3500m 的中、低山。

矿区地处西南天山山脉的西部,属高寒山区,海拔高程 3100~3920m,总体地势北高南低,山势陡峻,切割强烈,沟谷发育,属中高山地貌区。地形起伏较大,山坡陡峭,山脊呈锯齿状,地形切割较剧烈,山脊陡立,沟底分布较厚的冲洪积碎石土层。除少数宽阔沟谷外很少有平坦之地。地势陡峭河谷切割较深,悬崖耸立。

4.1.3 地质特征

4.1.3.1 区域地质背景

克孜勒苏柯尔克孜自治州地处年轻的帕米尔高原上。帕米尔高原寒武纪时期隆起,华里西时期断裂,并发生剧烈升降,形成拗陷和褶皱。地质结构复杂,主要为新生界第四系地层。自治州境内多山,山地占全州总面积的 90%以上。地势由东南向西北呈梯状上升,东南部为塔里木盆地边缘绿洲和喀什噶尔平原,最低处海拔 1197m,北部、西北部为天山南脉和帕米高原,最高处海拔 7719m,相对高差 6522m。山地以克孜勒苏河为界,从乌恰县的北部、阿图什市北部直至阿合奇县全境,为天山南麓;克孜勒苏河以南,从乌恰县西南部直到阿克陶县西部为帕米高原和昆仑山山区。境内群山起伏,高峰林立,有名的山峰有"冰山之父"慕士塔格峰、公格尔峰、公格尔九别峰。山顶常年戴雪,积雪厚度达百米以上;山间分布着条条冰川,并有冰洞、冰舌、冰斗、冰湖等分布。

4.1.3.2 地层

矿区出露的地层主要有上志留统塔尔特库里组(S3t),下泥盆统萨瓦亚尔顿组(D1sw),中泥盆统托格买提组(D2t),下石炭统巴什索贡组(C1b)。矿区地层划分见表 4.1-1。

界	系	统	组	段	代号
	石炭系	下统	巴什索贡组	第三岩性段	C_1b^3
		中统	托格买提组		D_2t
古	泥盆系	下统	萨瓦亚尔顿组	第二岩性段	D_1sw^2
古生界			严心业小 顿组	第一岩性段	D_1sw^1
介	志留系	上统		第三岩性段	S_3t^3
			塔尔特库里组	第二岩性段	S_3t^2
				第一岩性段	S_3t^1

表 4.1-1 矿区地层划分表

矿区地层总体呈 NE-SW 向带状展布,与区域构造线一致,地层总体走向 30° $\sim 70^\circ$,倾向 NW,局部倾向 SE,倾角 $48^\circ \sim 69^\circ$ 。

1、上志留统塔尔特库里组(S3t)

分布于矿区的中部、西部。为一套半深海-深海相具浊流沉积特征的浅变质细碎屑岩、硅质岩建造。是矿区重要赋矿层位。该组地层在区域上划分为四个岩性段,在矿区出露三个岩性段:

第一岩性段(S3t1): 位于矿区中部,分布于 F15 与 F14 间,呈 NE-SW 向 带状展布。岩性组合为含炭绢云千枚岩与薄层状变质粉砂岩不等厚互层,局部夹变质细砂岩、变质粉砂质泥岩。地层中 A 型褶皱、小挠曲、揉皱及线理、片理十分发育,片理产状与地层产状基本一致。地层厚度 409 米。IV号矿化带产于该岩性段与下泥盆统萨瓦亚尔顿组(D1sw)的接触带中,该岩性段为IV号矿化带的顶底。与下泥盆统萨瓦亚尔顿组(D1sw)为断层 F15 接触。

第二岩性段(S3t2): 位于矿区中西部,分布于 F14 与 F13 间。岩性组合为薄层状变质细砂岩、变质粉砂岩、含炭绢云千枚岩三者互层,局部地段夹变质粉砂质泥岩。该层中可见细小硅质岩条带。岩石普遍见绿泥石化。小型 A 型褶皱发育,片理十分发育,产状与岩层产状一致,地层厚度 969 米。

与下伏第一段(S3t1)为断层 F14 接触。

第三岩性段(S3t3): 位于矿区西部,分布于 F13 以西。岩性组合主体为含炭绢云千枚岩夹千枚状板岩、条带状硅质岩、钙质角砾岩。顶部为硅质千枚岩,底部为结晶灰岩夹硅质岩条带。岩石的色调较浅,为灰-浅灰色。地层中较常见完整或不完整的鲍马序列。该岩性段岩石变形程度较差,片理、小揉皱不发育,保存有较完整的波痕、沟模、槽模、等层面构造,地层厚度>656 米。与下伏第二段(S3t2)为断层 F13 接触。

2、下泥盆统萨瓦亚尔顿组(D1sw)

分布于矿区中部、东部,萨瓦亚尔顿河以东,玉奇坎盆、纳扎尔加依洛一带。 地层分布北宽南窄。为一套半深海-深海相的浅变质复理石建造,是矿区主要的 赋矿层位。该地层划分为两个岩性段。

第一岩性段(D1sw1):分布于矿区中部、东部,与第二岩性段(D1sw2)相间出现。主要岩性为灰色中厚层状变质细砂岩、薄层状变质粉砂岩、灰黑色含炭

绢云千枚岩。按岩性组合分为两个亚段:下亚段(D1sw1-a)为含炭绢云千枚岩夹薄层状变质细砂岩;上亚段(D1sw1-b)为中厚层状变质细砂岩夹少量炭质千枚岩。 地层厚度 71~520 米。Ⅰ、Ⅱ号矿化带主要赋存于该岩性段中。

与巴什索质组第三段(C1b3)为断层 F16 接触。

第二岩性段(D1sw2):分布于矿区中部、东部,与第一岩性段(D1sw1)相间出现。岩性组合为灰色中厚层状变质钙质细砂岩夹炭质绢云千枚岩,局部夹薄层状变质粉砂岩。片理较发育。该岩性段中的变质钙质细砂岩在矿化破碎带附近有硅化及交代现象。此外在该岩性段广泛发育槽模、沟模等,见包卷层理、水平层理等沉积构造现象。该段与下伏第一段为整合接触,地层厚度 262~1012 米。XI号矿化带主要赋存于该岩性段中。

3、中泥盆统托格买提组(D2t)

分布于矿区东部边部及东南角。为一套浅海相碳酸盐岩建造。岩性为灰白色 大理岩化灰岩。地层厚度>50米。

与下石炭统巴什索贡组(C1b)为断层 F17 接触。

4、下石炭统巴什索贡组(C1b)

分布于矿区东部边部及南部,矿区仅出露该组第三岩性段(C1b3): 岩性组合为含炭绢云千枚岩夹薄层状变质钙质粉砂岩,局部夹灰岩条带。底部为泥质灰岩、砂质灰岩、生物碎屑灰岩。该组与萨瓦亚尔顿组第一段(D1sw1)及托格买提组(D2t)均为断层接触。地层厚度 278~448 米。

5、第四系全新统(Q4)

- (1) 残积层(Q4el):分布在山顶、山坡的基岩表面。由碎石、砂、亚粘土等组成。厚 0.3~3.5 米。
- (1) 坡积层(Q4al):分布在山坡、山脚,由碎石、砂、粘土、腐植质组成。厚 0.5~7.0 米。
- (3) 洪冲积层(Q4pal):分布于萨瓦亚尔顿河、硝尔布拉克河谷及其次一级河谷中。由砾石、漂砾、砂等混杂堆积。厚度 2.0~17.0 米。

矿区主要岩石特征:

(1) 变质粉砂岩

主要分布在塔尔特库里组(S3t)及萨瓦亚尔顿组第二岩性段(D1sw2)中。

岩石灰色,变余粉砂结构,薄层状构造,主要有石英(71~82%)、岩屑(3~20%)、长石(1~3%)、绢云母(3~13%)、铁质碳酸盐(4~18%)组成。碎屑粒径一般介于0.05~0.1毫米之间,以次棱角状为主;岩屑为变质泥岩,中酸性熔岩等;长石为斜长石。受构造应力作用迭加,碎屑具一定的定向拉长并微具定向排列。填隙物为微小绢云母、硅质和微量绿泥石。副矿物为少量电气石、锆石、磷灰石、白钛石等。

(2) 变质细砂岩

主要分布在萨瓦亚尔顿组(D1sw)第一、二岩性段中,塔尔特库里组(S3t)中也有少量分布。

岩石灰色,变余细砂结构,薄-中厚层状构造,主要由石英(32~49%)、岩屑(25~38%)、绿泥石(1~3%)、长石(4~8%)、绢云母(5~10%)、方解石(2~13%)、及炭质(1~3%)组成,受构造应力作用影响,碎屑具有一定的拉长和定向排列。碎屑以次棱角状为主,碎屑粒径一般介于0.15~0.25毫米之间;岩屑为中-酸性熔岩、变质粉砂岩、变质泥岩等;长石基本为斜长石和微量钾长石。填隙物为细小绢云母、方解石、绿泥石等。副矿物为电气石、锆石、白钛石、磷灰石等。

(3) 含炭绢云千枚岩

主要分布在上志留统塔尔特库里组(S3t)及下泥盆统萨瓦亚尔顿组(D1sw)中。

岩石灰黑色,粒状鳞片变晶结构,千枚状构造,主要由磷片状绢云母(38~65×10-2),微细粒石英(17~29%),炭质(4~5%),长石(3~9%)绿泥石(2%)组成,副矿物有电气石等。

(4) 炭质绢云千枚岩

主要分布在下泥盆统萨瓦亚尔顿组第二岩性段(D1sw2)中。

岩石灰色,粒状鳞片变晶结构,千枚状构造,主要由绢云母(44~45%)、炭质(20~45%)、微粒状石英(8~11%)、长石(2~4%)组成。绢云母定向排列,副矿物有少量的褐铁矿、绿泥石、磷灰石等。

(5) 绢云千枚岩

主要分布在上志留统塔尔特库里组第一岩性段(S3t1)中。

岩石灰色,粒状鳞片变晶结构,千枚状构造,主要由磷片状绢云母(30~70%)、微粒石英(24~60%)、长石(1~5%)、绿泥石(1~3%)、铁质碳酸盐(2~4%)组成,绢云母大致定向排列。岩石中副矿物有少量的褐铁矿、电气石、白钛石等。

(6) 大理岩化灰岩

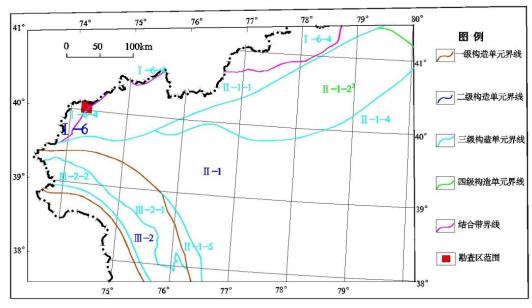
主要分布在矿区东部中泥盆统托格买提组(D2t)中。

岩石灰黑色,斑状微-细晶结构,块状构造。主要由方解石(98%)石英(2%)组成,副矿物为褐铁矿。方解石大部分界于0.02~0.1毫米之间,少量呈孤立他形0.3~1毫米的斑晶,受后期应力作用,斑晶中双晶略有弯曲,局部基质方解石亦有受力定向现象。

(7) 变质岩屑砂岩

主要分布在上志留统塔尔特库里组第三岩性段(S3t3),岩石灰色,变余砂状结构,薄层状构造。主要由岩屑(40~80%)、石英(10~45%)、长石(1~6%)、绢云母(2~7%)和铁质碳酸盐(3~6%)组成。碎屑以次棱角状为主,约占全岩的90%,粒径0.4~1毫米,分选性较差。岩屑为中性熔岩、变质泥岩、变质粉砂质泥岩等;长石多为斜长石。填隙物由定向排列的微小绢云母、微量石英和粒状铁质碳酸盐组成。副矿物有电气石、白钛石、锆石等。

(8) 含生物碎屑细晶灰岩


主要分布在上志留统塔尔特库里组第三岩段(S3t3)底部及中上部,呈夹层或透镜状产出。

岩石灰黑色,含颗粒亮晶结构,块状构造。主要由方解石(76%)、生物碎屑(8%)、似球粒(3%)、岩屑(3%)、自生钠长石、自生石英、黄铁矿、褐铁矿(10%)组成。

岩屑为泥岩、结晶灰岩等,填隙物为略具重结晶的他形方解石。

(9) 硅质岩

主要分布在上志留统塔尔特库里组第三岩段(S3t3)中,岩石灰色,微粒结构,呈薄的夹层或条带状产出。块状构造,主要由微粒石英(82%)、磷片状绢云母(10%)、白云石和铁白云石(8%)组成,绢云母具有定向排列特征,岩石坚硬。

天山兴蒙造山系 I 、卡拉库姆-塔里木陆块区 II 、III秦祁昆造山系。

南天山-红柳河结合带 I -6,东阿莱-哈尔克山弧前增生带 I -6-4,塔里木陆块 II -1,西南天山-霍拉山上叠盆地 II -1-1,柯坪陆缘盆地 II -1-22,塔里木中央地块 II -1-4,塔里木南缘隆起 II -1-5,III—2 西昆仑弧盆系,III—2-1 昆盖山晚古生代岛弧。III—2-2 莫什塔拉岛弧。

图 4.1-2 大地构造位置图

4.1.3.3区域构造

受区域构造的影响,矿区构造复杂且发育,矿区处于以萨瓦亚尔顿-吉根断裂(F15)为中心的韧性剪切挤压带的北段,不同规模的褶皱和断裂构造构成了矿区构造的基本格局。区内断裂控矿特征明显,已发现的大小金矿化带均无例外地受北东向断裂破碎带控制。

1、褶皱

矿区范围内具有一定规模的褶皱主要分布于下泥盆统萨瓦亚尔顿组(D₁sw)中,由一系列 NE 向近平行的背斜和向斜组成。此外,层间小褶皱(鞘褶皱、A型褶皱)在各地层中均为发育。

在矿区中东部下泥盆统萨瓦亚尔顿组(D₁sw)中发育一系列 NE 向的背斜和向斜,轴线走向约为 39~40°,与地层走向基本一致,背向斜均向北东倾伏,规模均较小,长 1.73~0.96 千米,宽 0.92~0.37 千米左右,背斜核部地层为萨瓦亚尔顿组第一岩性段(D₁sw¹),两翼地层为萨瓦亚尔顿组第二岩性段(D₁sw²),向斜核部地层为萨瓦亚尔顿组第二岩性段(D₁sw²),翼部地层为萨瓦亚尔顿组第

一岩性段(D1sw1)。除纳扎尔加依洛沟附近的背斜属直立倾伏背斜外(见图 4.1-3), 其它背向斜均为倒转,两翼地层产状总体向北西倾斜,局部向北东倾。褶皱属成 矿前构造,与矿化带走向斜交,对金矿的形成没有直接的影响。

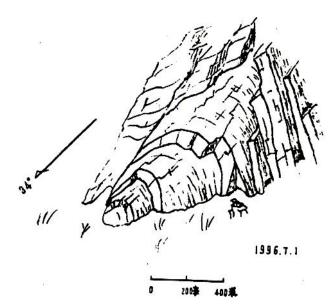


图 4.1-3 纳扎尔加依洛背斜转折端

此外,鞘褶皱、A型褶皱在矿区各地层及金矿化破碎带中均为发育,多为韧性剪切挤压带的产物。A型褶皱广泛发育于IV号矿化带及底板萨瓦亚尔顿组第二段(D1sw2)中,规模较小,长 0.5~2.0 米,宽 10~40 厘米,高十几厘米,形态复杂,有紧密尖棱状褶皱和宽缓对称褶皱,产状变化大。

2、断裂构造

矿区断裂构造极为发育,不同规模、不同类型、不同性质的断裂构造先后形成于不同地质环境中,并在时空演化上具有多期活动的特征。区内发育有北东向、北西向、近南北向的三组断裂,其中北东向断裂控制着区内地层和矿化带的分布,具有规模大,角度陡、韧脆性变形、逆冲推覆等特征;北西向和南北向断裂规模较小,与成矿关系不明显,多形成于成矿前,对矿体无破坏作用。

(1) 北东向断裂

共有 9 条,编号分别 F1、F2、F3、F4、F13、F14、F15、F16、F17。这 9 条断裂在平面上近平行分布。其中 F15 为既是区域性断裂,也是矿区内主要控矿断裂; F1、F2、F3、F4 为次级控矿断裂; F13、F14、F16、F17 为区域性断裂,在矿区范围内对成矿作用不显著。

A.主要控矿断裂

F15 断裂(IV号矿化破碎带): 在区域上该断裂为两个板块(伊犁-伊塞克湖微板块和塔里木地块)的缝合线(结合带),也是两个地层小区的分界线,在矿区为主要控矿构造,控制着IV号矿化破碎带,该破碎带具有规模大、角度陡(72°)、韧脆性变形强烈和多期活动等特点,因此控制的IV号矿化带及矿体规模大,具有多期成矿的特点。

该破碎带有 317 个工程在地表及深部进行了控制,基本查明了破碎带的分布、 产状及其特征。

该破碎带在矿区内出露长度约 7.8 千米,向北东延伸出境,向南西延伸至吉根地区,宽度一般在 10~50 米之间膨缩变化,最宽可达 80 米,垂向延深稳定,钻孔控制斜深大于 1134 米。破碎带主断裂面由于受后期脆性变形(张扭性)的影响,曲折起伏、陡缓交错,沿走向呈中间(00~55 线间)膨大,向两端狭缩状态,沿倾向呈曲折起伏,亦具有膨大狭缩,陡缓交错的特征。总体走向北东南西,走向一般为 20°~45°,倾向北西,倾向 290°~315°,倾角在 42°~88°之间变化,局部直立或反倾,破碎带产状与地层产状呈斜交关系,北东段交角大,个别地段(31~39 线)呈垂直;南西段交角小,局部产状一致。上盘为上志留统塔尔特库里组(S3t),下盘为泥盆统萨瓦亚尔顿组(D1sw)。

破碎带在地表多被风化的残坡积覆盖,仅在鞍部断续有露头,呈黄褐色-深褐色,带内褐铁矿和黄钾铁钒发育,另见有针铁矿、孔雀石和蓝铜矿等次生矿物,成为矿化破碎带的地表找矿标志。经地表工程控制,破碎带内以碎裂岩为主,少量角砾岩和断层泥,石英脉、石英-菱铁矿脉、方解石脉极为发育,呈脉状、网脉状或团块状,纵横交错,局部可见少量原生金属矿物:黄铁矿、毒砂、辉锑矿及少量黄铜矿、方铅矿、闪锌矿等,其间裂隙发育,并的蚀变较强的透镜状岩块。

深部经钻孔验证,破碎带向深部延深稳定,破碎带内褶曲、A型褶皱、节理及劈理极为发育,为韧脆性变形产物。且带内构造岩发育,仍以碎裂岩为主,其次为糜棱岩,局部有角砾岩和断层泥。碎裂岩在破碎带分布最为广泛,糜棱岩分布在破碎带局部,在破碎带内同时出现碎裂岩和糜棱岩的部位,认为是韧性和脆性的转换带部位,往往是金矿富集成矿的有利部位,厚度较大,金属矿物发育,金品位较高。构造岩岩性以变质砂岩,细砂岩,千枚岩为主,其次为石英、方解

石团块和砂质、泥质、炭质的粉沫。

破碎带控制了矿化带及其矿体的分布和规模等特征,破碎带具有多期活动特征,根据破碎带构造岩、金属矿物组合,石英和碳酸盐岩脉的穿插关系,并结合区域大地构造活动的特征大致分以下期次:

早期(早二叠世)洋盆聚敛时的俯冲和板块边缘陆陆碰撞,形成了韧性挤压剪切带,矿区普遍发育的拉伸构造,鞘褶皱、A型褶皱,岩石较为破碎,构造岩为糜棱岩(残留),使金元素进行了活化和初步的富集,该阶段形成了蚀变带(大于 0.1×10⁻⁶)和矿化带(大于 0.3×10⁻⁶),局部可能形成低品位带(大于 0.8×10⁻⁶)。

晚期(三叠纪)由于造山隆起,地壳被剥蚀,使早期的韧性挤压剪切带向脆性剪切带过渡,断裂也由早期的韧性挤压向脆性张扭性转变,并叠加到早期挤压变形带上,同时含矿热液重新活动而引发的叠加矿化,从破碎蚀变带两侧成矿热液渗滤交代形成了低品位带(大于0.8×10⁻⁶)和工业矿带(大于2.0×10⁻⁶),该阶段构造岩以碎裂岩为主,局部有角砾岩,为矿区的主成矿期。主成矿期受张扭性破碎带控制,它控制了IV-1-1、IV-2-1号工业矿体的空间分布、形态、产状、规模等变化。

矿区构造演化与成矿关系甚为密切,多期次的构造演化决定着多期次多阶段的成矿特征,根据破碎带中石英-碳酸盐岩脉的穿插关系、金属矿物组合和黄铁矿的赋存状态及结晶程度的差异判断,该破碎带在主成矿期又经历了五次不同方式的活动,与热液期成矿阶段相对应。

在主破碎带上下盘(旁侧)产生的一系列规模不等的伴生断裂或破碎带,在空间上与主破碎带近平行呈雁列式排列,次级破碎带仍被成矿热液充填和灌入,形成了规模大小不等的矿化体或矿体。IV-4、IV-6、IV-8、IV-10等矿体受在主破碎蚀变带上盘破碎带控制,主要分布在主破碎蚀变的中部 19线附近; IV-5、IV-7、IV-9、IV-11等矿体受主破碎蚀变带下盘破碎带控制,主要分布在IV-1-1号主矿体北东段深部(矿尾),与主破碎带在倾向上呈尖灭侧现。从韧脆性剪切带控矿和成矿规律分析,下盘的破碎带所控制的矿体在深部有可能会形成新的富集区。

B.次要控矿断裂

F1、F2、F3、F4 等 4 条断层是 F15 断裂引起的平行的次级断裂,为次级控矿构造。其规模较小,活动能力较弱,伴随的矿化也较弱。F1、F2、F3、F4 分

别控制的 I、II、XI2 和XI1 号矿化带多为低品位矿, 局部富集为工业矿体。

F1 断层: 为次级控矿断层,位于矿区中东部,向北延至国境以外,向南延伸至硝尔布拉克河。长度约 6.5 千米,宽 13~60 米,走向 NE(约 40°),倾向 NW,倾角约 84°。早期具有韧脆性变形的特征,晚期成矿期具有张裂特征,沿走向波状起伏,沿倾向上陡下缓。并控制 II 号矿化带及其矿体的空间分布、形态、产状、规模等变化。

F2 断层: 位于矿区中部偏东,向北延至国境以外,向南延伸至萨瓦亚尔顿河,北端被一平移断层错断,位移 1.2 千米。在矿区内长约 4.0 千米。宽 $5\sim30$ 米,走向 NE($30^\circ\sim60^\circ$),倾向 NW,倾角约 70° 。F2 断层所形成的破碎带控制控制了 I 1 号矿化带的分布、规模和产状。

在 F2 断层旁侧还发育更次一级的破碎蚀变带,控制着 I 2、 I 3、 I 4、 I 5 号矿化蚀变带。

其次 F3、F4 断层与 F1、F2 断层性质相同,它们所形成的破碎带分别控制了XI2 和XI1 号矿化带分布。

C.区域断裂

区域性断裂除 F15 外,还有 F13、F14、F16、F17,均为北东向断裂,该组断裂均为成矿前断裂,具有规模大、角度陡(≥50°)、脆韧性变形、逆冲推覆特点,在矿区范围内这四条断裂控矿特征不明显。

F13 断层:为一逆断层,并具有韧脆-韧性变形。位于矿区西部,在矿区出露长度 5.4 千米,向两端延伸出矿区。倾向 NW,倾角 50°~60°。断层走向舒缓波状,该断层为塔尔特库里组之第二、三岩性段的分界线。为成矿前断层,南部见有辉绿岩脉,在断层旁侧有小规模的矿化蚀变带平行排列。

F14 断层:为一逆断层,位于矿区中部偏西,在矿区出露长度 9.3 千米,向两端延伸出矿区。倾向 NW、倾角 50°±。断层走向较平直,该断层有明显的地貌标志,表现为沟谷负地形。断层通过处岩石极为破碎。为塔尔特库里组之第一、二岩段的分界线。旁侧有小规模的矿化蚀变带平行排列。

F16 断层: 为一逆冲断层,位于矿区东部,在矿区内长度 9.2 千米。断层面倾向 NW,倾角 55°。是萨瓦亚尔顿组(D1sw)与巴什索贡组(C1b)分界线,上盘为萨瓦亚尔顿组(D1sw),下盘为巴什索贡组(C1b),萨瓦亚尔顿组推覆

在巴什索贡组之上。

F17 断层: 为一逆冲断层,位于矿区东部边部,在矿区内出露长度9千米。 走向在硝尔布拉克沟口以北为 NE 向,以南稍偏南。断层面倾向 NW,倾角 65° 左右。是矿区内托格买提组(D2t)与巴什索贡组(C1b)之分界线。

(2) 北西向断层

包括 F5、F6、F7、F8。该组断层为成矿后期形成的,规模均小,长度在 0.77~ 2.8 千米之间,其中 F8 规模最大,分布在矿区南东侧,该断层切错了北东向主断 裂 F13、F14、F15、F16、F17,但对矿化带及其矿体无破坏作用,其中 F5、F6、F8 具右行平移性质,F7 具左行平移性质。

(3) 近南北向断层

包括 F9、F10。是区内小型断层,主要由沟谷的某些地段反映出来,其性质不明,对矿区地层分布和矿化带的形成无影响。

4.1.3.4岩浆岩

矿区内岩浆活动微弱,未发现火山岩。仅在矿区西北、西南部发现了辉绿岩脉、二长岩脉。

辉绿岩脉:分布在矿区南部及西部,出露二处,分别充填在断层 F15 和 F13 中,脉长约 327~357 米,宽 5~40 米,其中充填在断层 F15 中的向南延伸出矿区,产状与断层产状一致。该岩脉为蛇绿杂岩的一部分,经微量分析表明该辉绿岩脉中富含亲铜元素,金含量 0.25~3×10⁻⁹,由此推断,该岩脉为金矿的形成提供了部分物质来源。

二长岩脉:分布在矿区的西部,产于志留统塔尔特库里组第二岩性段(S3t2)和第三岩性段(S3t3)的分布线(断层 F13)中,长 330米,宽 5~30米,产状与断层产状一致。

4.1.4 气候气象

项目区所在区域高山荒漠气候区,气候干燥,降水量少而蒸发量大,冬季寒冷漫长,夏季温凉短促,风沙大而多,四季不分明,昼夜温差大。平均无霜期 135 天,气候南北差异很大,属典型的中温带大陆性气候。年平均温度 6.7℃。最高气温 34℃,最低气温-29.4℃。一、二月月平均气温-8~-9℃。无霜期 160

至 180 天,积雪厚度最大可达到 1m 左右,冻土深度为 170cm。年降水量约 250mm 左右,多集中于 5~8 月,年蒸发量为 2400mm 左右,光能资源丰富,多西北风,最大风力可达 10 级,主要自然灾害为雪、冰雹、地震等。

风向: 西北风

风力:最大风力可达 10级

年平均风速: 2.6m/s

年降水量为: 250mm

年平均蒸发量: 2400mm

年平均气温: 6.7℃

年极端最高气温: 34℃

年极端最低气温: -24.4℃

标准冻土深度: 170cm。

矿区所在区域属典型的内陆高山气候-西帕米尔气候亚区,其基本特征是冬季漫长,夏季短促;区内每天天气变化频繁,时而飞雪冰雹,时而暴雨倾下,时而阳光明媚,基本无可预见性。

矿区建立的简易气象站观测资料显示,矿区及所在区域每年 4 月至 5 月为洪水期,冰雪大量消融;5 月下旬至 6 月初为雨季。7 月至 8 月为矿区夏季,天气晴朗,温和少雨,偶有短促暴雨;由于山脊坡度较大,降水易产生较强的坡面径流,不利于地下水的补给;最高气温 26℃。9 月至 10 多雨雪,天气渐近冬季。11 月至次年 3 月为冰冻期,长达 150 余天,天气寒冷多风,每日飞雪飘飘,日最大降雪厚度可达 2 米,全年累计积雪厚度达 8 米(最厚处),最低气温-29.1℃。最大冻土厚度为 3.5 米。

矿区所在区域内全年多为西北-北风,最大风速 16.1 米/秒; 日最大降水量 23.1 毫米,冬季最大日降雪量大于 2 米;半年降水量 385.7 毫米,半年蒸发量 405.5 毫米; 因该地区冬季降水(雪)量远大于蒸发量,故预测矿区年平均降水量大于 1000毫米,年平均蒸发量大于 700毫米;湿润系数大于 1,矿区属湿润区。

4.1.5 水文及水文地质

4.1.5.1水文

克孜勒苏河水系,又称克孜河水系,为塔里木流域上游水系,主流克孜勒苏河,主要支流有吉根河、萨哈勒河、交玉鲁干河、玛尔坎苏河、康苏河、膘尔托阔依河、库孜洪河、乌瑞克河等二十余条。流域面积 14146km²。主流克孜勒苏河由西北向东南流经乌恰县中部进入喀什地区。支流分别由西南、北部汇入主流,遍布乌恰县境内。

克孜勒苏河,发源于天山南脉中吉边界西侧吉尔吉斯斯坦境内扎尔多布卡山口海拔 4419m 的冰山上。从乌恰县吉根乡的斯姆哈纳入境,由西北向东南横贯乌恰县中部,流入喀什地区疏附县,进入喀什地区以后汇入喀什噶尔河,由河源至山口段长 248km,河道全长 847km,在我国境内长约 600km,在州境内长 245.4km。纵坡 4.0%。多年平均流量 62.1m³/s,历年最大流量 1400m³/s,最小9.60m³/s。多年平均流量 67.3m³/s。多年平均径流量 19.584 亿 m³。最大年径流量 23.50 亿 m³,最小年径流量 17.65 亿 m³。水源主要由冰雪融水补给,另外还有降水和泉水补给。水源补给情势比较稳定。洪水期在 5~9 月,径流量占全年总量的 60%,最大洪水期为 7 月,为年总径流量的 20%。枯水期在 11 月至翌年 3 月,长达 5 个月,但径流量仅占全年总量的 15%,12 月至翌年 2 月水量最小,仅占全年流量的 3%。

矿区周边水系发育,主要河流为萨瓦亚尔顿河,其次为硝尔布拉克、恰喀什河,均为长年流水。萨瓦亚尔顿河主要接受冰雪融水、大气降水及少量地下水补给。

萨瓦亚尔顿河流经IV号矿带各矿体上盘。萨瓦亚尔顿河属克孜勒苏河一条小支流,为季节性河流,平均流量为 430m³/d,水流量随着降雨量大小而变化。水系呈树枝状汇入萨瓦亚尔顿河,并由北向南流出矿区,在距矿区 35 千米处的乌鲁克恰提乡汇入克孜勒苏河。

本工程地表水系图见图 4.1-4。

图 4.1-4 区域地表水系图

4.1.5.2 水文地质

萨瓦亚尔顿矿区地下水分两种类型(按埋藏条件): 孔隙水和基岩裂隙水。

孔隙水:分布不连续,一般分布于现代河床,河漫滩及冲沟中,含水层岩性 为冲洪积成因的卵砾石、砂砾石、砂等,含水层孔隙发育,储水空间良好,水位 埋深一般小于 4m,含水层厚度 1-8m,富水性中等—强。直接受大气降水、冰雪 融水、上游河水和其它地下水的补给。第四系残坡积物含水层多分布于山坡地带 (阴坡),分布面积较广,主要由岩石风化碎块、碎屑、亚砂土、亚粘土等组成, 孔隙发育,储水空间良好,厚度变化大,沿坡面由上至下,厚度增大。

基岩裂隙水又分为风化裂隙水和构造裂隙水:

(1) 风化裂隙水

不均匀分布于碎屑风化壳中,一般含水层厚 2-20m, 局部破碎带增厚,由上部第四系孔隙水和降水融雪补给,总体呈弱富水性。

(2) 构造裂隙水

主要分布在张性-张扭性断裂、裂隙中,在矿区北侧根据对钻探过程的监控调查,认为构造裂隙水在矿区内较不发育,主要集中分布在构造破碎带内。钻探施工中揭露的构造破碎带,构造裂隙水流量均小于1.0L/s,总体呈弱富水性。

矿区及其周边第四系空隙水分布区域不广,多沿山间分布,第四系冲洪基卵砾石、砂砾石、砂层厚度多为 0.5-2.0m,局部变化极大,出露泉水多为第四系空隙泉,流量 0.02-0.50L/s。无泉眼分布于矿区范围内,距矿区最近的泉眼位于矿区边界北侧约 400m,距采矿场约 2km,采矿活动对地下水影响较小,故对此处泉眼影响较小。

基岩裂隙水地层分布广泛,基岩裂隙水主要以层状岩类裂隙水和脉状岩类裂隙水存在,该地区降水量丰富,基岩裂隙水补给充足,但地层内裂隙不发育,矿区内地层多为弱富水层。由于地表第四系残坡积物、冲洪积物大量覆盖,基岩裂隙水多通过第四系渗出,补给下部第四系空隙泉和河水。

矿区内富水区域分布较少,多分布于河谷上游及山坡阴坡面,其他区域为弱富水性,其中,萨瓦亚尔顿河上游分布较广,岛状中等富水区仅零星分布。

冻结层上水多分布于海拔 3750m 以上,冻结层下水多分布于海拔 3650m 以上,分布于矿区北部和北东部高山区内。冻结层赋存于下古生界砂岩及第四系冰渍层飘砾、坡积层碎石亚砂土中,含水层厚度随季节变化,夏季 0.5-2m,局部阳坡 6-10m,冬季 2-4m,局部大于 15m。冻结层水是基岩裂隙水,部分泉水的

主要补给源。

矿区内松散岩类孔隙水和基岩裂隙水受大气降水、冰雪融水及地表河水的直接补给,松散岩类孔隙水一部分在区内沟谷中以泉的形式出露地表,汇入河流以地表水的方式排泄;一部分在地下潜流,通过松散堆积物、构造断裂及裂隙,以侧向地下径流的方式,补给海拔更低处的松散堆积物孔隙水、地表河水及坡积物下伏的基岩地层裂隙水,或排泄至更低处的地下水中;另一部分则通过地表蒸发、植物蒸腾等以垂向的方式排泄,回到大气中。基岩地层中的基岩裂隙水,在裂隙的控制下赋存、径流和运移,通过裂隙以侧向地下径流的方式,由高海拔处向低海拔处排泄出矿区,形成补给区、径流区和排泄区基本一致的特点,具有中高山区地下水、地表水互相补排的普遍特征。

4.1.6 地震

根据《中国地震动参数区划图》(GB18306-2001),萨瓦亚尔顿金矿区位于地震动峰值加速度区划图的 0.3g 区,对应地震基本烈度为WI度,根据地壳结构、新生代地壳变形、现代构造应力场、地震震级、地震基本烈度、地震动峰值加速度等指标,进行地壳稳定性划分,将矿区地壳稳定性划分为不稳定区,因此在开采过程中一定要做好地震的相关预防措施。

图 4.1-5 萨瓦亚尔顿金矿区地震动峰值加速度区划图

4.1.7 植被与动物资源

乌恰县野生动物资源有雪豹、棕熊、鹅喉羚、野猪、旱獭、雪鸡、石鸡等。 野生药用植物资源有紫草、甘草、阿魏、麻黄、车前草、党参、当归、蒲公英、 黄芪、锁阳、茯苓等。已发现的矿产资源有煤、石油、油页岩、铁、铜、铅、锌、 锶、金、磷、盐、硫磺、石灰石、石膏、陶瓷土等。其中煤的储量占全州煤炭储 量的一半以上。

本项目所在地为高中山区,山体表面植被发育,河谷地段发育有抗寒耐旱的植被,植被有针茅群落,该区植被的优势种主要为针茅,植被覆盖度在5%~25%。

根据现场调查访问,因矿区人为活动时间较长,野生动物的种类和数量非常

有限,偶尔会发现旱獭、麻雀、黄鼠狼、乌鸦等野生动物活动。

4.2 环境质量现状调查与评价

4.2.1 环境空气质量现状调查与评价

4.2.1.1 空气质量达标区的判定

《环境影响评价技术导则 大气环境》(HJ2.2-2018)规定: "城市环境空气质量达标情况评价指标为 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO 和 O_3 ,六项污染物全部达标即为城市环境空气质量达标"。

本工程位于克孜勒苏柯尔克孜自治州乌恰县境内,据环境空气质量模型技术支持服务系统筛选结果显示:克孜勒苏柯尔克孜自治州 2021 年 SO₂、NO₂、PM₁₀、PM_{2.5}年均浓度分别为 4ug/m³、13ug/m³、76ug/m³、24ug/m³;CO24 小时平均第 95 百分位数为 1.4mg/m³,O₃ 日最大 8 小时平均第 90 百分位数为 130ug/m³;超过《环境空气质量标准》(GB3095-2012)中二级标准限值的污染物为 PM₁₀。本工程区域环境空气质量不达标。区域空气质量现状评价表见表 4.2-1。

污染物	年评价指标	现状浓度/ (μg/m³)	标准值/ (μg/m³)	占标率 /%	达标情况
SO_2	年平均质量浓度	4	60	6.67	达标
NO_2	年平均质量浓度	13	40	32.5	达标
PM_{10}	年平均质量浓度	76	70	108.5	不达标
PM _{2.5}	年平均质量浓度	24	35	68.5	达标
CO	24 小时平均第 95 百分位数	1400	4000	35	达标
O ₃	日最大 8 小时平均第 90 百 分位数	130	160	81.25	达标

表 4.2-1 区域空气质量现状评价表

4.2.1.2 其他污染物环境质量现状

本评价对特征因子 TSP 开展补充监测。

(1) 环境空气现状调查

2022年9月,委托新疆新环监测检测研究院(有限公司)对项目区进行了 补充监测。

1) 监测点的布置

根据项目所在地的具体位置、当地气象、地形和环境功能等因素,主要考虑对区域环境空气质量的影响,共布设1个环境空气监测点,位于矿区下风向,根据导则要求,补充监测点位布置在厂址及20年统计的主导风向下风向5km处1~2个监测点,本次监测点符合导则相关要求。监测布点见表4.2-2,监测布点图见图42-1。

2) 监测项目及分析方法

大气环境质量现状监测项目为: TSP。

3) 监测时间和频率

监测时间:连续监测7天。

4) 监测数据

监测数据见表 4.2-3、4.2-4。

(2) 环境空气质量现状评价

根据环境空气质量现状调查结果,计算各污染物的单因子标准指数。对照环境空气质量标准,由各监测点现状监测结果可以看出,TSP24小时平均浓度值满足《环境空气质量标准》(GB3095-2012)二级标准。

4.2.2 地表水环境质量现状调查与评价

萨瓦亚尔顿河位于矿区范围内,为 I 类水体,执行《地表水环境质量标准》 (GB3838-2002)中的 I 类标准。

4.2.2.1 监测点位布设

选择萨瓦亚尔顿河上游进行背景值监测,并取下游1个点进行对比监测,因此地面水监测共布设2个监测点,监测布点见表4.2-5,监测布点图见图4.2-1。

4.2.2.2 监测时间与频率

新疆新环监测检测研究院(有限公司)于 2022 年 9 月对萨瓦亚尔顿河地表水进行了监测。

4.2.2.3 监测项目与分析方法

监测项目主要包括 pH 值、化学需氧量、五日生化需氧量、氨氮、氰化物、六价铬、硫化物、挥发酚、阴离子表面活性剂、硒、砷、汞、铅、石油类、锰、锌、粪大肠菌群、氟化物、硫酸盐、氯化物 20 个项目。监测分析方法见表 4.2-6。

检测项目	检测依据
рН	水质 pH 的测定 玻璃电极法 HJ1147-2020
化学需氧量	水质 化学需氧量的测定 重铬酸钾法 HJ828-2017
五日生化需氧量	水质 五日生化需氧量(BOD ₅)的测定 稀释与接种法 HJ505-2009
氨氮	水质 氨氮的测定 纳氏试剂 分光光度法 HJ535-2009
氰化物	水质 氰化物的测定 容量法和分光光度法 HJ484-2009
六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB7467-1987
硫化物	水质 硫化物的测定亚甲基蓝分光光度法 GB/T16489-1996
挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ503-2009
阴离子表面活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB7494-1987
汞、砷、硒	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ694-2014
铅、铜、锌、镉	水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB7475-1987
石油类	水质 石油类的测定 紫外分光光度法(试行)HJ970-2018
锰	水质 铁、锰的测定 火焰原子吸收分光光度法 GB11911-1989
粪大肠菌群	水质 粪大肠菌群的测定 多管发酵法和滤膜法(试行)HJ/T347-2007
锰	水质 铁、锰的测定 火焰原子吸收分光光度法 GB11911-1989
氟化物	水质 氟化物的测定 离子选择电极法 GB7484-1987
硫酸盐	水质 无机阴离子的测定 离子色谱法 HJ84-2016
氯化物	水质 氯化物的测定 硝酸银滴定法 GB11896-1989

表 4.2-6 水质监测分析方法

4.2.2.4 评价标准

萨瓦亚尔顿河执行I类水域标准。

4.2.2.5 评价方法

采用单项评价标准指数法进行评价。单项水质评价因子 i 在第 j 取样点的标准指数为:

$$S_{i,j} = \frac{C_{ij}}{C_{si}}$$

式中: Si, j—单项水质参数 i 在第 j 点的标准指数;

Ci, j—水质评价因子 i 在第 j 取样点的浓度, mg/L;

Csi—i 因子的评价标准, mg/L。

pH 的标准指数为:

$$S_{pH,j} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}} \qquad pHj \le 7.0$$

$$S_{pH,j} = \frac{pH_{j} - 7.0}{pH_{sv} - 7.0} \qquad pH_{j} > 7.0$$

式中: pH_{i} 取样点水样 pH 值;

pH_{sd}—评价标准规定的下限值;

pH_{su}—评价标准规定的上限值。

当 Si, j>1 时,表明该水质参数超过了规定的水质标准,Si, j<1 时,说明该水质可以达到规定的水质标准。

4.2.2.6 监测结果

地表水监测结果见表 4.2-7。

4.2.2.7 评价结果

监测及评价结果表明: 萨瓦亚尔顿河各地表水质监测指标标准指数均小于 1, 未超过《地表水环境质量标准》(GB3838-2002)中 I 类标准。

4.2.3 地下水环境质量现状调查与评价

4.2.3.1 监测点位布设

共设5个地下水监测点,坐标见表4.2-8,具体位置见图4.2-1。

4.2.3.2 监测时间

地下水监测点委托新疆新环监测检测研究院(有限公司)于 2022 年 9 月进行了采样检测。

4.2.3.3 监测项目与分析方法

监测项目主要包括八大离子: K^+ 、 Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 CO_3^{2-} 、 HCO_3^- 、 Cl^- 、 SO_4^2 -以及 pH 值、总硬度、溶解性总固体、高锰酸盐指数、铁、锰、铜、锌、挥

发性酚类、氨氮、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、汞、砷、镉、铬 (六价)、铅、氰化物等 28 个项目。监测分析方法均按原国家生态环境局出版 的《环境水质监测质量保证手册》、《水和废水监测分析方法》执行。

4.2.3.4 评价标准

执行《地下水质量标准》(GB/T14848-2017)中的Ⅲ类标准限值。其标准值见表 2.5-2。

4.2.3.5 评价方法

采用单项评价标准指数法进行评价。单项水质评价因子 i 在第 j 取样点的标准指数为:

$$S_{i,j} = \frac{C_{ij}}{C_{sj}}$$

式中: Si, j—单项水质参数 i 在第 j 点的标准指数;

Ci, i—水质评价因子 i 在第 i 取样点的浓度, mg/L;

Csi—i 因子的评价标准, mg/L。

pH 的标准指数为:

$$S_{pH,j} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}} \qquad pHj \le 7.0$$

$$S_{pH,j} = \frac{pH_{j} - 7.0}{pH_{sv} - 7.0} \qquad pH_{j} > 7.0$$

式中: pHi—i 取样点水样 pH 值;

pHsd—评价标准规定的下限值;

pH_{su}—评价标准规定的上限值。

当 Si, j>1 时,表明该水质参数超过了规定的水质标准,Si, j<1 时,说明该水质可以达到规定的水质标准。

4.2.3.6 监测结果

监测结果见表 4.2-9。

监测结果标准指数见表 4.2-10。

4.2.3.7 评价结果

监测结果表明: 地下水各监测因子均满足《地下水质量标准》(GB/T14848-2017)中的III类标准。

4.2.4 声环境质量现状评价

4.2.4.1 声环境现状调查

项目声环境质量现状调查采用现场监测的方法,委托新疆新环监测检测研究院(有限公司)对项目区声环境质量现状进行监测,根据监测数据对项目区声环境质量现状进行评价。

(1) 监测点位布设

本工程声环境现状监测分别在矿界北侧、西侧、东侧、南侧,各设置1个监测点,共4个监测点。

(2) 监测因子

监测因子为等效连续 A 声级。

(3) 监测时间及频率

噪声监测时间为 2022 年 9 月, 分昼间和夜间两个时段监测。

(4) 监测方法

环境噪声监测按《声环境质量标准》(GB3096-2008)有关规定进行,昼间、 夜间各监测一次。

4.2.4.2 声环境质量现状评价

声环境监测结果见表 4.2-11。

监测结果表明:项目区场界昼间、夜间噪声值均满足《声环境质量标准》(GB3096-2008)2类标准要求。

4.2.5 土壤环境质量现状评价

4.2.5.1 土壤环境现状调查

本次评价委托新疆新环监测检测研究院(有限公司)于 2022 年 9 月对土样 进行了分析。

(1) 监测布点

本工程布设 10 个监测点, 在矿区范围内布设 3 个柱状采样点(1#、2#、3#、), 1 个表层采样点(4#), 矿区范围外布设 6 个采样点(5#、6#、7#、8#、9#、10#), 点位具体位置布设见表 4.2-12 及图 4.2-1。

(2) 监测因子

农用地土壤污染风险筛选 8 个基本工程: 镉、汞、砷、铅、铬、铜、镍、锌。(3)分析方法

表 4.2-13 土壤环境质量检测分析方法

序号	分析项目	依据	检出限
1	汞	土壤质量 总汞、总砷、总铅的测定 原子荧光法第 1 部分: 土壤中总汞的测定 GB/T22105.1-2008	0.002mg/kg
2	铬(六价)	土壤和沉积物 六价铬的测定 碱溶液提取/原子吸收分光光度法	0.04mg/kg
3	镍	土壤质量 镍的测定 火焰原子吸收分光光度法 GB/T17139-1997	0.30mg/kg
4	铅	土壤质量 铅、镉的额定 石墨炉原子吸收分光光 度法 GB/T17141-1997	2.00mg/kg
5	神	土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分: 土壤中总砷的测定 GB/T22105.2-2008	0.01mg/kg
6	铜、锌	土壤质量 铜、锌的测定 火焰原子吸收分光光度 法 GB/T17138-1997	0.60mg/kg
7	镉	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T17141-1997	0.03mg/kg
8	四氯化碳	土壤和沉积物 挥发性有机物的测定 吹扫铺集/气	0.0013mg/kg
9	氯仿	相色谱-质谱法 HJ605-2011	0.0011mg/kg

序号	分析项目	依据	检出限
10	氯甲烷		0.0010mg/kg
11	1,1-二氯乙烷		0.0013mg/kg
12	1,2-二氯乙烷		0.0013mg/kg
13	1,1-二氯乙烯		0.0010mg/kg
14	顺-1,2-二氯乙烯		0.0013mg/kg
15	反-1,2-二氯乙烯		0.0014mg/kg
16	二氯甲烷		0.0015mg/kg
17	1,2-二氯丙烷		0.0011mg/kg
18	1,1,1,2-四氯乙 烷		0.0012mg/kg
19	1, 1, 2, 2, -四氯 乙烷		0.0012mg/kg
20	四氯乙烯		0.0014mg/kg
21	1,1,1-三氯乙烷		0.0013mg/kg
22	1, 1, 2-三氯乙烷		0.0012mg/kg
23	三氯乙烯		0.0012mg/kg
24	1, 2, 3-三氯丙烷		0.0012mg/kg
25	氯乙烯		0.0010mg/kg
26	苯		0.0019mg/kg
27	氯苯		0.0012mg/kg
28	1,2-二氯苯		0.0015mg/kg
29	1,4-二氯苯		0.0015mg/kg
30	乙苯		0.0012mg/kg
31	苯乙烯		0.0011mg/kg
32	甲苯		0.0013mg/kg
33	间二甲苯+对二甲苯		0.0012mg/kg
34	邻二甲苯		0.0012mg/kg
35	硝基苯		0.0004mg/kg
36	苯胺		0.0010mg/kg
37	2-氯酚	土壤和沉积物 半挥发性有机物的测定 气相色谱- 质谱法 HJ834-2017	0.0400mg/kg
38	苯并(a)蒽	/火 旧1公 113037-201 /	0.0001mg/kg
39	苯并〔a〕芘		0.0002mg/kg

序号	分析项目	依据	检出限
40	苯并〔b〕荧蒽		0.0002mg/kg
41	苯并〔k〕荧蒽		0.0001mg/kg
42	薜		0.0001mg/kg
43	二苯并〔a, h〕蒽		0.0001mg/kg
44	茚并〔1, 2, 3-cd〕 芘		0.0001mg/kg
45	萘		0.0004mg/kg
46	рН	土壤 PH 值的测定 电位法 HJ962-2018	-
47	含盐量	森林土壤水溶性盐分分析 LY/T1251-1999	-

(4) 评价标准

占地范围内土壤环境质量现状评价执行《土壤环境质量 建设用地土壤污染 风险管控标准(试行)》(GB36600-2018)第二类用地筛选值;

占地范围外土壤环境质量现状评价执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)农用地土壤污染风险筛选值。

(5) 评价方法

本次土壤环境质量现状评价采用单因子标准指数法, 计算公式:

 $P_i = C_i / S_i$

式中: Pi——单因子标准指数;

Ci——污染物实测浓度值(mg/kg,μg/kg);

Si——评价标准值(mg/kg)。

4.2.5.2 监测结果及评价

土壤监测结果见表 4.2-14。

根据评价结果,占地范围内土壤各监测点监测结果均能达到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值要求;占地范围外土壤各监测点监测结果均能达到《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)农用地土壤污染风险筛选值。

4.3 区域生态环境现状调查与评价

4.3.1 生态功能区划

根据《新疆生态功能区划》,项目区属 III 天山山地温性草原、森林生态区 -III₃ 天山南坡草原牧业、绿洲农业生态亚区-39.天山南坡西段荒漠草原水土流失敏感生态功能区。主要生态服务功能为土壤保持、荒漠化控制。该生态功能区的主要生态服务功能、生态敏感因子、主要生态环境问题和主要保护目标见表 4.3-1,生态功能区划图见图 4.3-1。

生态	功能分区	单元	本見 にか	主要生	子無化子	生态敏感	/H +++	\tau +5+	少量
小大 区	生态亚	生态功	隶属行政 区		主要生态 环境问题	因子敏感	保护 目标	保护 措施	发展 方向
生态区	区	能区	Δ	功能	小児问赵	程度	日彻	1日/旭	刀叫
		39. 天山							
m Zala	III ₃ 天山	南坡西							维护自
III天山	南坡草	段荒漠			井口口		保护山地	草场禁	然生态
山地温	原牧业、	草原水	台 丛 目	土壤保	草场退	土壤侵蚀	草地植	牧和减	平衡,
性草原、	绿洲农	土流失	乌恰县		化、土壤	中度敏感	被、保护	牧、禁止	发挥草
森林生	业生态	敏感生		化控制	风蚀水蚀		矮沙冬青	樵采	原生态
态区	亚区	态功能							功能
		区							

表 4.3-1 项目区生态功能区划

4.3.2 区域土地利用现状

根据新疆土地利用/土地覆盖地图数据 6 大类 25 小类的统计,矿区土地利用类型为低覆盖度草地。项目区域及周边地区土地利用类型见图 4.3-2。矿区属典型的中温带大陆性荒漠气候,气候干燥,降水量少而蒸发量大,矿山范围内植物群落较为单一,为盐生草荒漠、无植被戈壁和多汁盐柴类荒漠。矿区范围内山坡基岩裸露,坡面及沟谷分布草地。矿区地处高中山区,周边 5km 范围内没有居民区,因此采矿区土地利用类型基本保持原状,用地类型将由低覆盖度草地变更为工矿用地。

4.3.3 植物资源现状调查

评价区域属山地草原生态系统,分布于天山南坡西段荒漠草原。评价区域内山地草原面积广阔,野生动物栖息地生境单一,以山地动物类群构成系统的次级和顶级生物主体。野生动物种类的组成特点是,主要分布耐寒的啮齿类和鸟类,大型哺乳类的种类和数量较少。山地草原生态系统的功能简单,结构单一,区域土壤中水分因子较少,一经破坏较难恢复。

(1) 植被类型及分布

评价区属于 IIB₃ 天山南坡荒漠及山地草原植被省,项目位于中高山区,区域内山地草原带分布于海拔 3100~3920m。植被以针茅占优势。

针茅群系:这个群系的建群种和优势种有针茅、西北针茅,伴生种有冷篙、 羊茅、假木贼等。群系层片结构明显,通常可分为禾草层片、篙类植物的小半灌 木层片和地衣--壳状地衣层片。在强石质化的情况下,白皮锦鸡儿等灌木层发育明显,形成锦鸡儿--篙类--针茅荒漠草原。植被覆盖度 5~30%,平均植株高度10~30cm。

(2) 评价区植被种类

根据《新疆植被及其利用》及《新疆植被区划的新方案》,项目区域属于新疆荒漠区东疆一南疆荒漠亚区,天山南坡荒漠及山地草原植被省。项目区为荒漠草场,植被覆盖度在 5-25%左右,主要植被为针茅、羊茅等,沿河植被覆盖度较高。评价区常见植物名录见表 4.3-2,植被类型图见图 4.3-3。评价区无自然保护区、森林公园、风景名胜区等,无珍稀濒危及国家级和自治区级保护植物。

表 4.3-2 评价范围内常见植物名录统计表

序号	中文名	拉丁学名	 分布情况
_	禾本科	Poaceae, Gramineae	
1	羊茅	Festuca ovina L.	局部
2	针茅	Stipa capillata L.	局部
3	沙生针茅	Stipa caucasica subsp.Glareosa (P.A.Smirnov) Tzve	偶见
4	假羊茅	Festuca pseudovina Hack. ex Wiesb.	局部
5	短花针茅	Stipa breviflora Griseb.	偶见
6	紫花针茅	Stipa purpurea Griseb.	偶见
7	紫羊茅	Festuca rubra L.	偶见
8	镰芒针茅	Graminea	偶见
9	新疆针茅	Stipa sareptana Becher var. sareptana	偶见
10	紫花针茅	Stipa purpurea Griseb.	偶见
=	莎草科	Cyperaceae	
11	苔草	Carex spp.	局部
12	草原苔草	Carex liparocarpos Gaudin	局部
Ξ	菊科	Asteraceae Bercht.&J.Presl	
13	高山娟蒿	Seriphidium rhodathum	偶见
14	蒲公英	Taraxacum mongolicum HandMazz.	局部
15	天山蓟	Cirsium alberti Rgl. et Schmalh.	偶见
16	白茎绢蒿	Seriphidium terrae-albae (Krasch.) Poljak.	偶见
五	藜科	Chenopodiaceae	
17	灰藜	Chenopodium album L.	偶见
18	尖头叶藜	Chenopodium acuminatum	局部

序号	中文名	拉丁学名	分布情况
19	萹蓄	Polygonum aviculare L.	局部
20	地衣	lichens	局部

在评价区分布的天然植被中,无国家和自治区重点保护的植物,无《中国生物多样性红色名录》中列为极危、濒危和易危的物种及其他重要物种。

(3) 典型样方调查

在区域踏勘的基础上,本次评价于 2022 年 7 月 21 日对项目区内的生态植被进行了样方调查,根据普遍性和典型性相结合的原则,结合评价区植被覆盖情况和工程影响情况,在矿区范围设置点,进行了样方调查,在样地内随机设置了 8 个样方。矿区土地类型主要为低覆盖度草地,根据项目区土地类型及植物组成和盖度,统计样方内植被种类、盖度、高度等,草本植物样方面积为 1m×1m。

根据项目区土地类型及植物组成和盖度,统计样方内植被种类、盖度、高度等。典型样方调查见样方表 4.3-3。样方的布设位置见图 4.3-4。

表 4.3-3 矿区群落典型样方调查表

从 100 					
		君	群落样方编号1		
调查日期	2022.07.21	调查地点	露天采区	样方面积	1m×1m
海拔高度	3414m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	5	植被总盖度	20%
序号	植物名称	丛 (株)数	高度(cm)		多度
1	羊茅	1	5-10		SP
2	天山蓟	1	30		SP
3	假羊茅	1	10-25		SP
4	针茅	5	5-10		COP1
5	蒲公英	4	5-10		COP1
		君	洋落样方编号 2		
调查日期	2022.07.21	调查地点	北排土场	样方面积	1m×1m
海拔高度	3492m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	4	植被总盖度	15%
序号	植物名称	丛 (株)数	高度(cm)		多度
1	针茅	15	5-10		COP1
2	蒲公英	2	5-20		SP
3	天山蓟	2	5-25		SP
4	灰黎	1	5-10		SP

调查日期	2022.07.21	调查地点	南排土场	样方面积	1m×1m
海拔高度	3361m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	5	植被总盖度	15%
序号	植物名称	丛 (株)数	高度(cm)		多度
1	针茅	11	10~20		COP1
2	蒲公英	7	5~15		COP1
3	天山蓟	1	5-10		SP
4	假羊茅	1	5-10		SP
5	灰藜	3	5-10		SP
		君	洋落样方编号 4		
调查日期	2022.07.21	调查地点	露天采区	样方面积	1m×1m
海拔高度	3426m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	4	植被总盖度	15%
序号	植物名称	丛 (株)数	高度(cm)		多度
1	针茅	20	5~10		COP2
2	灰藜	3	5~10		SP
3	蒲公英	11	5~20		COP1
		君	洋落样方编号 5	·	-
调查日期	2022.07.21	调查地点	露天采区	样方面积	1m×1m
海拔高度	3441m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	1	植被总盖度	10%
序号	植物名称	丛 (株)数	高度 (cm)		多度
1	假羊茅	1	5~25		SP
		君	洋落样方编号 6	ı	-
调查日期	2022.07.21	调查地点	露天采区	样方面积	1m×1m
海拔高度	3411m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	3	植被总盖度	30%
序号	植物名称	丛 (株)数	高度(cm)		多度
1	灰藜	4	5~10		COP1
2	尖头叶藜	6	5~10		COP1
3	3 萹蓄 1 5~10		SP		
		粗	洋落样方编号7	ı	·
调查日期	2022.07.21	调查地点	矿区河流沿线	样方面积	1m×1m
海拔高度	3419m	土壤类型	栗钙土	地形/地貌	高中山
植被类型	草地	植物种类数	1	植被总盖度	75%
序号	植物名称	丛(株)数	高度(cm)		多度

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

1	针茅	28	5-25		COP3	
	群落样方编号 8					
调查日期	2022.07.21	调查地点	矿区河流沿线	样方面积	1m×1m	
海拔高度	3426m	土壤类型	栗钙土	地形/地貌	高中山	
植被类型	草地	植物种类数	4	植被总盖度	75%	
序号	植物名称	丛 (株)数	高度 (cm)		多度	
1	尖头叶藜	25	5-10		COP3	
2	滨黎	1	5-10		SP	
3	萹蓄	32	5~10		COP3	

样万照片见卜图。	
样方一	样方二
样方三	样方四
样方五	样方六

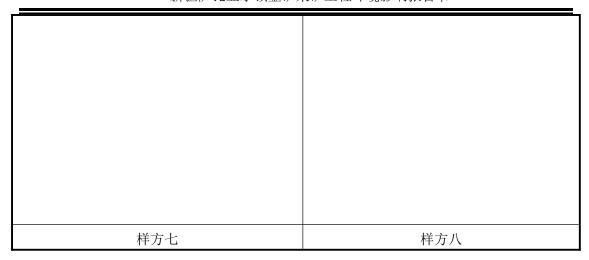


图 4.3-4 样方调查照片

(4) 小结

项目区属于西南天山西段,属高中山区,海拔 3100~3920m, 生态系统结构 简单,稳定性较差,滋味修复能力低下,破坏不易恢复。土壤质地、地下水的不同,造成了区域内植被类型主要是以荒漠化植被,山体表面植被零星发育,河谷 地段发育有抗寒耐旱的植被。植被覆盖度不高,物种较为贫乏,生产力低下。本项目区内土地利用类型主要为低覆盖度草地,土壤类型为淡栗钙土,植被主要为针茅等。

4.3.4 野生动物资源现状调查

在动物区系上属蒙新区的西部荒漠亚区中的塔里木盆地小区,动物区系组成简单,野生动物种类及分布均很少。经过与建设单位沿途踏勘和资料收集,样线调查采取3条路线,调查时长为3天,项目沿线评价范围内,没有国家、地方保护野生动物分布,亦没有大型兽类动物分布。从动物栖息种类及其生境分析,根据资料记载本区域常见动物种类见表4.3-4,"++"为常见种;"+"为少见种;"-"为偶见种。

根据现场调查访问,因矿区人为勘探活动时间较长,野生动物的种类和数量非常有限总的来说,项目在较大范围(10km×10km)内,动物资源较为贫乏。

 序号
 动物名录
 分布频度
 保护级别

 一
 爬行类
 ++

 1
 南疆沙蜥 Phrymocephalus uersicolor
 ++

 2
 密点麻蜥 Eremias multionllata
 ++

表 4.3-4 区域内动物名录统计表

序号	动物名录	分布频度	保护级别
3	快步麻蜥 Eremias velox	++	
4	荒漠麻蜥 Phrynocephalusgrumgrizimalo	+	
=	哺乳类		
5	长耳跳鼠 Euchoreutes naso	++	
6	毛脚跳鼠 Dipus sagitta	++	
7	草兔 Lepus capensis	+	
8	灰仓鼠 Cricetulus migratorius	++	
9	子午沙鼠 Meriones meridianus	++	
10	大耳猬 Hemiechinus auritus	+	
11	小家鼠 Mus musculus	++	
12	狼 Canis cupus	-	国家二级
13	野猪 Sus scrofa	-	
14	旱獭 Marmota bobak	+	
三	鸟类		
15	鸢 Milvus korschun	+	
16	燕隼 Folco Subbwteo	-	国家二级
17	红隼 Folco tinnunculus	-	国家二级
18	麻雀 Passer montanus	++	

图 4.3-5 动物样线分布图

4.3.5 土壤类型及分布

根据现场调查及资料查阅,受气候、地形、母质和植被等因素的综合影响,本工程评价区内主要土壤类型主要为淡栗钙土+钙质石质土,土壤类型图见图 4.3-6。

(1) 淡栗钙土

淡栗钙土处于气候较干旱的环境,年降水量 200~300mm,湿润度 0.24~0.4, 无霜期 100~130 天,地形与母质同土类。自然植被属干草原向荒漠草原过渡类型,除典型草原植被外,荒漠化植被亦开始出现,相应的植被生长稀矮,每年地 上、地下生物累积量较低,腐殖质层更薄,有机质含量减少,相反,钙积层出现部位增高,碳酸钙聚积量增大。

自然植被属于草原向荒漠草原过渡类型,除典型草原植被外,荒漠化植被亦 开始出现。土壤水分状况较栗钙土亚类更差。相应的植被生长稀矮,每年地上、 地下生物累积量较低,腐殖质层更薄,有机质含量减少,相反,钙积层出现部位 增高,碳酸钙聚积量增大。

淡栗钙土剖面由淡栗色或黄棕色腐殖质层,灰白色钙积层和淡灰黄或黄灰色 母质层组成。削面构型属 A-Bk-C型,层次过渡非常明显。腐殖质层厚一般为 15~30cm,薄者仅 10cm 左右。有机质含量 10~25g/kg,侵蚀较严重的在 10g/kg 以下。腐殖质组成的地区差异较大,甘、新地区则富里酸较多。胡富比为 0.5 左右。钙积层厚 20~35cm,出现部位较栗钙土更浅,常在 25~40cm 深处出现。

(2) 石质土

石质土即"粗骨土"。由于山丘地区地形起伏,地面坡度大,切割深,上体浅薄,加之风蚀、水蚀大多较重,细粒物质易被淋失,土体中残留粗骨碎屑物增多,因而具显著的粗骨性特征。还有部分母岩,在干湿条件下,物理风化尤为强烈,在漫长的成土年代可形成较深厚的半风化土体,细粒物质少,而砂粒含量尤高。这些粗骨土,大部分分布于边缘山丘地区,植被多为稀疏灌丛草类,覆盖率较高,地面有较多的凋落物积累,土壤持水量较大,有明显的生物积累特征。

粗骨土土层较石质土厚,但多为 A-C 或 A-AC-C 构型。表土层厚度 10~20cm 不等,质地砾质性强,结构性差,根系少,疏松多孔。表土层以下即为风化或半风化的母质层,厚度变幅较大,20~50cm 不等,夹有大量岩屑体。表土层及母质层中石砾含量超过 35%。土壤颜色除表土层略深外,以下母质层颜色因岩性不同各异,但均较鲜艳,且上下过渡较明显。

粗骨土的理化性状与母岩风化物的性质密切相关。如土壤细粒部分的质地可从砂土到粘土,土壤反应酸性,中性及石灰性均有,pH5.4~8.5。土壤有机质含量多数在 20~25g/kg,低的 1g/kg 左右,高的可达 40g/kg 以上,这与植被生长疏密有关。全磷含量平均为 0.5g/k 左右,全钾在 20g/kg 以下,速效养分含量也不高。硅质岩形成的粗骨土特别贫瘠。

4.3.6 生态现状调查结论

综上所述,本项目属 III 天山山地温性草原、森林生态区-III₃ 天山南坡草原牧业、绿洲农业生态亚区-39.天山南坡西段荒漠草原水土流失敏感生态功能区;矿区土地利用类型为低覆盖度草地;矿区范围内主要涉及淡栗钙土+钙质石质土,植被覆盖度在 5-25%左右,主要植被为座针茅等。因矿区人为勘探活动时间较长,野生动物的种类和数量非常有限,偶尔会发现鼠类等野生动物活动。

5环境影响预测与评价

5.1 施工期环境影响分析与预测评价

5.1.1 施工期环境影响因素

本工程为金矿开采项目,施工期主要完成矿山的基础设施的建设、辅助生产 等工程建设。

在工程实施过程中会产生少量的摒弃废石,地面建筑物的建设、场地平整、掘土、地基深层处理及土石方、建筑材料运输、设备装配等施工行为,产生的噪声、扬尘、生产生活污水和固体废弃物等在一定时期内都将会对周围环境造成一定的影响,这些污染贯穿整个施工过程,但不同污染因子在不同施工段污染强度不同,这种影响除永久占地外一般属于可逆的,在施工期结束后将一并消失。

环境要素 影响因子 产生源 源强 排放特征 风速 1.5m/s, 挖方、填方、弃土堆放、 有风时影响下风 扬尘 150m 内影响 运输 向,时限性明显 明显 环境 粉状物料装卸、运输、 散落,有风时对下 空气 粉尘 微小 堆放、敷设、拌和 风向有影响 尾气: CmHn、 面源、扩散范围有 燃油设备、运输车辆 微小 CO, NO_x 限,排放不连续 施工废水: 施工设备、机械、混凝 不连续, 收集处理 少量 土养护 水环境 SS、石油类等 后回用 生活污水 施工人员 $4.0 \text{m}^{3}/\text{d}$ 不连续,环保厕所 空压机、挖掘机、装载 机、翻斗车、载重汽车、 无指向性, 不连续 声环境 设备噪声 75~90dB (A) 电锯、混凝土搅拌机、 焊接机、液压起重机 表土剥离 $113 \times 10^4 \text{m}^3$ 堆放于表土堆场 部分回收、不可回 生产固废 收部分运至乌恰县 土壤环境 建筑垃圾 5t 城建部门指定场所 处置 生活垃圾 施工人员 0.025t/d收集后定期拉运至

表 5.1-1 施工期环境影响因素一览表

环境要素	影响因子	产生源	源强	排放特征	
				乌恰县生活垃圾填	
				埋场填埋处理	
		降水形成的地表径流对			
	水土流失	松动的土层冲刷带走泥	-	冲刷、堆积	
		沙,风蚀带走泥沙			
生态	土地占用	临时、永久占地使土地		古子关	
上 企		使用功能改变	-	成为道路建设用地	
	弃土	临时,有扬尘、水土流	15450m ³	冲刷、堆积、有风	
				时影响下风向,时	
		失发生的可能		限性明显	

5.1.2 施工期大气环境影响分析

施工活动对大气环境的影响主要为扬尘及少量汽车尾气,包括施工扬尘、运输道路扬尘及施工料场扬尘。

(1) 扬尘废气的影响

该项目建设施工过程中的大气污染主要来自于项目区内基础设施建设的扬尘。在整个施工期产生扬尘的作业有场地平整、开挖、部分道路修建、建材运输、露天堆放、装卸和搅拌等过程,如遇干旱无雨季节,加上大风,施工扬尘将更严重。

据有关调查显示,施工工地的扬尘主要是由运输车辆的行驶产生,约占扬尘总量的60%,在完全干燥情况下,道路扬尘可按下列经验公式计算:

Q = 0.123(
$$\frac{V}{5}$$
) $(\frac{W}{6.8})^{0.85}(\frac{P}{0.5})^{0.75}$

式中: Q——汽车行驶的扬尘, kg/km·辆;

V——汽车速度, km/h;

W——汽车载重量, t;

P——道路表面粉尘量, kg/m²。

表 5.1-2 为一辆载重 5 吨的卡车,通过一段长度为 500m 的路面时,不同路面清洁程度、不同行驶速度情况下产生的扬尘量。由此可见,在同样路面清洁情况下,车速越快,扬尘量越大;而在同样车速情况下,路面清洁度越差,则扬尘量越大。

表 5.1-2 不同车速和地面清洁程度时的汽车扬尘 单位:	kg/辆·km
-------------------------------	---------

P 车速	0.1 (kg/m ²)	0.2 (kg/m ²)	0.3 (kg/m ²)	0.4 (kg/m ²)	0.5 (kg/m ²)	1.0 (kg/m ²)
5 (km/h)	0.0283	0.0476	0.0646	0.0801	0.0947	0.1593
10 (km/h)	0.0566	0.0953	0.1291	0.1602	0.1894	0.3186
15 (km/h)	0.0850	0.1429	0.1937	0.2403	0.2841	0.4778
20 (km/h)	0.1133	0.1905	0.2583	0.3204	0.3788	0.6371

表 5.1-3 为施工场地洒水抑尘的试验结果,结果表明采取每天适量洒水进行抑尘,可有效地控制施工扬尘,可使扬尘减少 30~80%左右,可将 TSP 污染距离缩小到 20~50m 范围。

表 5.1-3 施工场地洒水抑尘试验结果

距离(m)		5	20	50	100
TSP 小时平均浓度	不洒水	10.14	2.89	1.15	0.86
(mg/m ³)	洒水	2.01	1.40	0.67	0.60

因此,限速行驶及保持路面清洁,同时适当洒水是减少汽车扬尘的有效手段。 施工扬尘的另一种情况是露天堆场和裸露场地的风力扬尘,由于施工需要, 一些建材需露天堆放,一些施工点表层土壤需人工开挖、堆放,在气候干燥又有 风的情况下,会产生扬尘,其扬尘量可按堆场起尘的经验公式计算:

$$Q=2.1 (V_1-V_0)^{-3}e^{-1.023W}$$

式中: Q——起尘量, kg/t·a;

V₁₀——距地面 10m 出风速, m/s;

V₀——起尘风速, m/s;

W——尘粒含水率,%。

由此可见,这类扬尘的主要特点是与风速和尘粒含水率有关,因此,减少建材的露天堆放和保证一定的含水率是抑制这类扬尘的有效手段。

尘粒在空气中的传播扩散情况与风速等气象条件有关,也与尘粒本身的沉降速度有关。以沙尘土为例,其沉降速度随粒径的增大而迅速增大。当粒径为250um时,沉降速度为1.005m/s,因此当尘粒大于250um时,主要影响范围在扬尘点下风向近距离范围内,而真正对外环境产生影响的是一些微小尘粒。根据现场施工季节的气候情况不同,其影响范围和方向也有所不同。因此,施工期间应特别

注意施工扬尘中细小颗粒污染的防治问题,须制定必要的防治措施,在施工区域设置挡风墙,以减少施工扬尘对周围环境的影响。

施工场地粉尘的污染程度与风速、粉尘粒径、粉尘含湿量和汽车行驶速度等因素有关,其中风速及汽车行驶速度两因素对粉尘的污染影响最大。行驶速度增大,粉尘污染范围相应扩大。因此,尽可能降低车速,可有效降低道路扬尘。

根据相关资料,在正常风情况下,建设场地产生的粉尘在施工地近地面浓度为 1.5~30mg/m³,其影响范围在下风向 30m 内,TSP 影响浓度最大为 5.0mg/m³,其余区域预测浓度值较低,在施工期内对施工区及运输路线的环境空气质量形成一定影响。

(2) 施工机械废气的影响

本期项目施工机械主要使用柴油等燃料燃烧,废气中主要空气污染成分有 SO_2 、 NO_x 、CO 和烃类,本工程施工期较短。因此仅会对施工机械使用集中区造成短期影响,对整个区域的环境空气质量影响较小。

5.1.3 施工期水环境影响分析

- (1) 施工废水主要来源
- ①施工人员产生的少量生活污水,主要污染物为COD_{cr}、SS、BOD、NH₃-N、动植物油:
 - ②建筑材料拌合溢流水:
 - ③砂石、水泥搅拌机等施工设备冲洗过程产生的废水:
- ④废水中含固体杂质较多,以泥沙为主。这类废水一般在施工现场以自然蒸发为主。

(2) 施工废水影响

本工程施工高峰期可达到50人,产生生活污水量为4.0m³/d,主要污染物为COD_{cr}、BOD₅、SS、NH₃-N、动植物油等,项目施工污水处置不当会对施工场地周围产生短时间的不良影响,具体影响如下:

- ①施工车辆、施工机械的洗涤水含有较高的悬浮物,直接排放将会使土壤受到一定程度的污染。
 - ②若施工污水任其随意排放,会影响施工场地周围的视觉景观及散发臭气。

因此,必须采取有效措施杜绝施工污水的环境影响问题。

- ③施工废水乱排乱弃,可能导致土壤污染及地下水污染。
- ④施工期生活污水日均量较小,生活污水可先采取撬装式生活污水处理站处理后绿化,优先建设矿区地埋式一体化生活污水处理设施处理。

5.1.4 施工期声环境影响分析

(1) 噪声源强及特点

建筑施工在不同的阶段产生的噪声具有各自的噪声特性,土方阶段噪声源主要有挖掘机、推土机、装载机和各种运输车辆,基本为移动式声源,无明显指向性;基础阶段噪声源主要有平地车、移动式空气压缩机等,基本属固定声源;结构阶段是建筑施工中周期最长的阶段,使用设备较多,是噪声重点控制阶段,主要噪声源包括各种运输设备、吊车等,多属于撞击噪声,无明显指向性;装修阶段施工时间较长,但声源数量较少。在实际施工过程中,往往是各种机械同时工作,各种噪声源的声能量相互迭加,噪声级将会更高,辐射面也会更大。

(2) 噪声预测

由于施工过程中,各类施工机械可处于施工区内任意位置,但在某一时段内其位置相对固定,对外界环境的影响可用半自由声场点声源几何发散衰减公式计算:

$$L_p = L_w - 20 \lg(r/r_0) - \Delta L$$

式中: Lp(r)—受声点声压级, dB(A);

L (ro) —参考点 ro 处声压级, db (A);

r—受声点至声源距离,m;

ro—参考点至声源距离, m。

建设项目周围区域声环境功能为《声环境质量标准》(GB3906-2008)中2 类区,因此建设项目周围区域声环境功能执行《声环境质量标准》(GB3906-2008)中2类标准,即昼间、夜间环境噪声执行的标准分别为60B(A)、50dB(A),据此计算各类施工机械辐射的噪声对周围区域声环境的影响距离,本次预测采用设备最大声级计算,计算结果见表5.1-4。

<u> </u>	离开施工机械的距离 (m)									
机械名称	1	10	20	40	60	80	100	200	300	2000
振捣棒	90	83	76	69	65.5	63	61	55	51.5	35
挖掘机	84	78	72	66	62.5	60	58	52	48.5	32
推土机	86	80	74	68	64.5	62	60	54	50.5	34
自卸汽车	90	64	62	58	54	52	50	43	38	34
装载机	90	84	78	72	68.5	66	64	58	54.5	38

表 5.1-4 主要施工机械的噪声级 单位: dB(A)

表 5.1-4 中计算结果表明, 昼间离施工场地约 80~100m 处可符合规定的噪声限值要求。

根据现场勘察,距项目区 200m 内无需特殊保护的声环境敏感目标,但为进一步减轻施工期噪声对环境影响,施工期间向周围排放噪声必须按照《中华人民共和国噪声污染防治法》规定,严格按《建筑施工场界环境噪声排放标准》(GB12523-2011)进行控制。

针对本工程的施工特点,为将施工期的噪声影响减小到尽可能低的程度,建议采取以下措施:

- (1)施工期间应严格遵守(GB12523-2011)关于《建筑施工场界环境噪声排放标准》规定要求,合理安排施工时间,优化施工方案,在夜间尽可能不用或少用高噪声设备;同时物料进施工区安排尽量在白天。
 - (2) 应尽可能避免地面大量高噪声设备同时施工,减少夜间施工量。
- (3) 合理布局施工场地,避免在同一地点安装大量动力机械设备,以避免 局部声级过高。
- (4)降低设备声级:应尽量采用低噪声施工设备,如以液压机械代替燃油机械,振捣棒采用低频振捣棒等;固定机械设备与挖土、运土机械,如挖掘机、推土机等,可通过排气管消音器和隔离发动机振动部件的方法降低噪声;对动力机械设备和运输车辆进行定期的维修和养护。

5.1.5 施工期固体废物对环境影响分析

施工过程中产生的固废主要为地面建(构)筑物建设产生的建筑垃圾和施工 废料;剥离表土;施工人员产生的生活垃圾等。

(1) 建筑垃圾、废料及表土

施工废料包括施工中产生的废弃砖石和洒落的混凝土、设备安装过程产生的金属废料等。金属废料施工后可进行回收,建筑垃圾和非金属废料由施工单位集中收集后运走,统一处理。采取上述措施后对项目周围环境影响较小。

IV及I露天采坑、北部排土场及南部排土场剥离的表土堆存在表土堆场, 共设计2个表土堆场,1#表土堆场布置于北部排土场西南侧约160m处,用于堆 存北部排土场及两个露天采坑的表土,占地面积约5×10⁴m²,容积61×10⁴m³; 2#表土堆场布置于南部排土场西南侧约300m处,用于堆存南部排土场的表土, 占地面积约5×10⁴m²,容积40×10⁴m³。可满足堆存要求,剥离的表土作为复垦 用土。

(2) 生活垃圾

生活垃圾包括残剩食物、塑料、废纸、各种玻璃瓶、动物骨刺皮壳等。这些 固废处置不当将会影响景观,污染土壤和水体,生活垃圾还会散发恶臭,生活垃 圾进行集中堆放,定期运至乌恰县生活垃圾填埋场处置。

采取上述措施后对项目周围环境影响较小。

5.1.6 施工期土壤环境影响分析

施工期对土壤的影响主要是表土扰动,固体废物堆存及施工设备漏油等,造成污染物进入土壤环境。

表土在该区对保护土地资源具有重要作用,因此本次环评要求建设单位应根据矿区施工进度有计划进行表土剥离保存,用于后期的原地貌恢复;施工场地设置临时隔油沉淀池,将施工废水隔油、沉淀处理后回用于施工工序,如洒水降尘等,生活污水采取地埋式一体化生活污水处理设施处理,处理达标后由综合利用;基建废石堆存于现有排土场,施工废料集中收集统一处理,生活垃圾集中收集,定期送至乌恰县生活垃圾垃圾填埋场处置。采取以上措施后,对项目区土壤环境影响较小。

5.1.7 施工期生态环境影响

(1) 永久占地

矿石开采对地形地貌的改变是永久性的,土地利用格局中裸岩石砾地、低覆 盖度草地转化为工矿用地,改变了区域地表覆盖层类型和性质。工程施工期在矿 区修筑场地道路等建设活动时,矿山开采永久占地将改变现有的土地利用方式,被占土地的地表植被破坏,使原自然生态系统所有功能完全损失,对生态系统完整性有一定影响并导致一定程度的水土流失,建设单位在施工期应做好水土保持工作,在经过矿区闭矿后的生态恢复工作后,对生态系统的影响将减轻。

(2) 临时性占地

临时性占地是工程施工过程中施工人员活动,施工机械辗轧,施工材料堆放,施工料场开挖,施工临时设施建设,施工场地平整所占用的土地。其影响主要表现在两个方面:一是取土或弃土、弃渣等造成对地表形态的影响;二是留下的临时设施即不利用又不拆除,影响景观的恢复,临时占地的影响性质是暂时性的,采取一定的措施和随着时间的推移,破坏的土地能够得以恢复,它未改变土地的利用形式,属可逆影响。但不采取文明施工和一定的恢复措施,对生态环境所造成的破坏,则往往需要很大时间才能恢复。

(3) 工程建设对区域土壤、植被影响

矿山建设项目在其建设过程中将不可避免地会占用和破坏一定面积的土地。 这些活动将直接破坏地表土层和植被,造成生物量损失和对土壤的破坏,从而造成对原有生态系统的破坏,引起水土流失。

本工程占地类型为裸岩石砾地及低覆盖度草地,施工期将使占地范围内的植被全部遭到破坏,土地利用类型改变。原生植被在遭到破坏后的第一个生长期内将全部消失,一次性减少了植被的面积,导致蓄水保土功能降低或丧失。施工期结束后,可对施工区域开展生态环境恢复、治理,可以减少对矿区及周边的生态影响。

(4) 野生动物影响分析

评价区域内野生动物种类较少,偶尔会发现旱獭、麻雀、黄鼠狼、乌鸦等野生动物活动,无珍稀濒危受保护野生动物,根据本工程的特点,各种施工机械的噪声及施工人员的活动干扰,都将使原来栖息在工程区附近的各种野生动物受到惊吓而迁移别处安生。目前项目区相对于当地野生动物的栖息地来说比例不大,因此对于野生动物的栖息地来说不会产生大的影响,不会导致野生动物因丧失栖息地而灭绝。

(5) 水土流失影响分析

本工程建设过程中,由于施工人员践踏、机械作业等,将对地表植被及土壤结构造成破坏,形成一定面积的裸地,遇到雨天气将会造成水土流失,开挖的土石方将占用一定的土地,对占地范围产生扰动、植被破坏,开挖土石方堆存易发生水土流失。工程建设新增水土流失产生于以下方面:

①本工程实施期间,由于场地开拓及平整地基土层的填挖、施工人员临时生活区、施工道路的布置等,均有可能造成原生地表植被的破坏,引发和加剧水土流失。

②弃渣堆放被风蚀的可能性较大,若堆放或保护措施不当,将会在大风作用下产生水土流失。

从本工程建设性质来看,项目及其配套设施建设将扰动原地貌,改变地形地貌,破坏植被,工程建设对拟建项目占地范围内的土地产生扰动,项目占地面积较小,影响范围也有限,对项目区周边水土流失的影响不大。

5.2 运营期环境影响预测与评价

5.2.1 大气环境影响分析与评价

5.2.1.1 大气污染物排放量核算

本工程大气环境影响评价等级为二级,根据《环境影响评价技术导则大气环境》(HJ2.2-2018),二级评价项目可不进行进一步预测与评价,只对污染物排放量进行核算。本工程大气污染物排放量核算情况如下:

(1) 无组织排放量核算

本工程大气污染物无组织排放情况见表 5.2-1。

	污染源	污染物名称	项目产生量	项目排放量	
	凿岩粉尘	颗粒物	0.68t/a	0.2t/a	
	爆破粉尘	颗粒物	19.8t/a	5.94t/a	
		СО	2.016t/a	2.016t/a	
露天	爆破废气	NOx	17.92t/a	17.92t/a	
开采	破碎粉尘	颗粒物	1.82t/a	0.546t/a	
	道路运输扬尘	颗粒物	18.56t/a	3.712t/a	
	排土场粉尘	颗粒物	32.94t/a	6.59t/a	

表 5.2-1 大气污染物无组织排放量核算表

	污染源	污染物名称	项目产生量	项目排放量
	表土堆场扬尘	颗粒物	2.02t/a	0.404t/a
		СО	6.42t/a	6.42t/a
	爆破废气	NOx	14.89t/a	14.89t/a
11		颗粒物	14.08t/a	2.816t/a
井下开采	排土场扬尘	颗粒物	32.94t/a	6.59t/a
万木	破碎粉尘	颗粒物	38.016t/a	0.38t/a
	井下装载、运输粉尘	颗粒物	少量	少量
	道路运输扬尘	颗粒物	18.56t/a	3.712t/a
		СО	10.64t/a	10.64t/a
	比外做体际与	NO_X	48.73t/a	48.73t/a
	柴油燃烧废气	THC	18.09t/a	18.09t/a
		SO_2	3.104t/a	3.104t/a

(2) 项目大气污染物年排放量核算

本工程大气污染物年排放情况见表 5.2-2。

序号 污染物 年排放量(t/a) 1 粉尘 30.78 2 CO 10.64t/a3 NO_X 48.73t/a4 THC 18.09t/a 3.104t/a 5 SO_2 1.303 **VOCs**

表 5.2-2 大气污染物年排放量核算表

5.2.1.2 环境空气影响预测与评价

1、各类废气排放影响分析

(1) 开采过程中凿岩、爆破废气影响分析

矿石露天开采过程中,凿岩、爆破等均会产生粉尘,本项目在开采施工前对 作业面进行预湿,开采过程中喷雾降尘,可以有效降低粉尘产生量,矿区周边无 居民聚集区,粉尘经水炮喷雾等措施处理后自然消散。

采矿井下生产过程中产生大量的废气,为使矿井内空气含尘量和有毒有害气体浓度达到国家卫生标准,项目设计采用"风、水结合,以风为主"的综合防治措施。在凿岩时还采取湿式凿岩作业、巷道内采取洒水降尘等措施。除加强井下

通风外,还须采取喷雾洒水、湿式作业、定期对主要入风巷道进行洗壁等降尘措施。爆破作业后一般要通风 3~4h,再进行放矿等作业。

本工程后期井下设计采用中央进风、两翼对角式通风系统,通风方式为机械抽出式。IV号矿带通风线路为:新鲜风流由平硐、副井、斜坡道进入井下,经中段运输巷道到达采场,风流冲洗工作面后,进入上中段回风巷道,由南、北回风井排出地表。I号矿带新鲜风流由平硐、盲斜坡道进入井下,经中段运输巷道到达采场,风流冲洗工作面后,进入上中段回风巷道,由1#、2#回风井排出地表。

地下采矿采掘废气经喷雾洒水除尘后通过轴流风机排出,废气从井下到达地面之前,要经过巷道,废气经巷道沉降后,浓度较低。该项目采用湿式凿岩方式,微差爆破,强制机械通风,装卸作业点经常进行喷雾洒水,定期清洗岩壁,降低空气中粉尘的浓度,通风井出口处粉尘浓度约 2.0mg/m³,经扩散稀释后场界 TSP浓度可达到《大气污染物综合排放标准》(16297-1996)表 2 新污染源大气污染物无组织排放浓度限值(1.0mg/m³)。因此,矿井下粉尘的影响,以井下采场局部环境为主,对外部环境影响较小。

爆破瞬时粉尘可达 300mg/m³, 强制通风后外排地面大气中的粉尘浓度低于 120mg/m³。对工作面采用湿式凿岩,喷雾洒水和定期清洗岩壁,可明显抑尘和降尘,爆破粉尘浓度可降至 2mg/m³。井下废气从风井口排至地面,废气中的主要成分为粉尘,通过井下喷雾降尘后排出浓度一般都能够符合《大气污染物综合排放标准》(16297-1996)表 2 新污染源大气污染物无组织排放浓度限值(1.0mg/m³),因此排出地面后对风井口附近的环境空气影响不大。NO_x 是爆破时炸药中的硝基化合物引起的,其量很少,浓度很低,排出后对环境空气影响很小。

综上所述矿区开采产生的废气量少,且经空气稀释净化后对周围大气环境影响不大。运营期工程对环境空气的影响随着采矿的结束,其对环境的影响也将随之消失,环境空气质量可以恢复至原有水平。项目区废气扩散在进入大气后能很快沉降于地面,巷道内工作人员在做好个体防护、巷道定期洒水抑尘等措施后,污染物对巷道内环境及工作人员的影响不大。

(2) 运输扬尘分析

本工程服务期主要运输扬尘产生于废石外运,本环评要求在运输道路路面定

期洒水降尘,保证路面适当湿度、可有效减轻运输扬尘的产生,减少对周边环境的影响。道路扬尘为间歇性扬尘,呈线源排放,且区域地势空旷,易于污染物扩撒,同时在采取洒水降尘、限速行驶等措施后,可将影响降至最低。本项目第1年公路开拓,汽车运输,第2年起为胶带运输,汽车运输造成的扬尘污染将大幅度减少。皮带运输下料点及转运站设置封闭单机除尘器,共设置6台,可将粉尘影响降至最低。

(3) 排土场、表土堆场扬尘

矿山开采过程中,在矿区设置露天排土场 2 处,废石在起风天气会造成不同程度的扬尘影响。项目采取分层压实、表面洒水降尘等措施后,可将影响降至最低。

矿山开采过程中,在矿区设置表土堆场 2 处,将剥离表土单独分区堆存,剥离表土在起风天气会造成不同程度的扬尘影响。项目采取分层压实、表面采用防尘网苫盖等措施后,可将影响降至最低。

矿区必须根据开采情况实施具体的降尘方案,定期对排土场和道路进行洒水抑尘,并采取将废石压实、大粒径废石覆压等措施,项目产生的扬尘将会得到有效抑制,粉尘排放量将降低80%以上,粉尘的排放对区域环境空气质量不会造成明显的影响。

(4) 矿石、剥离物装卸车扬尘

矿石、剥离物装卸车过程中,将产生一定量的扬尘,为间歇性扬尘,在采取 洒水降尘措施后,可将影响降至最低。本项目第1年公路开拓,汽车运输,第2 年起为胶带运输,配套洒水降尘和降低落料高度,可大幅减少装卸扬尘产生。

(5) 破碎筛分粉尘

根据本项目开发利用方案,设计矿岩合格块度≤800mm,大块率 3%,超过 挖掘机铲装能力的大块需要进行二次破碎,二次破碎选用 1 台 SW-45C 液压破碎 锤。向预破碎矿石表面洒水,破碎时进行洒水抑尘,可将影响降至最低。

井下开采时,IV号矿带在井下标高 3272m 设主胶带平硐,露采矿石及地采标高 3272m 以上矿石通过 3#、4#溜井下放至 3312m 中段,再通过汽车转运至 1#、2#溜井,下放至 3272m 破碎硐室破碎; 3272m 以下地采矿石通过 5#、6#溜井下放至 2852m 破碎硐室破碎。两台颚式破碎机产生的破碎废气通过在两处破碎硐

室内各配置 1 台湿式除尘器(除尘效率不低于 99.5%)和 1 台风机(处理风量 11000m³/h),破碎硐室周边设置水喷雾除尘系统,经湿式除尘器净化后废气排 至回风巷道,最终排出地表。经湿式除尘器净化,2 处破碎硐室内的粉尘排放量 均为 0.38t/a(0.144kg/h),排放浓度为 3.27mg/m³。经通风系统从风井排出的粉 尘浓度可降至 0.75mg/m³,能够符合《大气污染物综合排放标准》(16297-1996)表 2 新污染源大气污染物无组织排放浓度限值(1.0mg/m³)。

(6) 柴油燃烧废气

本工程运营中柴油机燃烧废气中主要含 CO、NOx、THC、SO₂等,为无组织排放。根据核算,本工程柴油燃烧废气中 CO、NOx、THC、SO₂等污染物产生量分别为 CO: 10.64t/a、NOx: 48.73t/a、THC: 18.09t/a、SO₂: 3.104t/a。柴油机采用增压中冷技术、燃油电喷技术等可提高柴油机功率、降低油耗,可减少柴油燃烧废气排放量。本工程柴油燃烧废气排放量较少,且项目区地表外环境相对较开阔,有利于废气扩散,经空气稀释净化后对周围大气环境影响不大。

(7) 食堂餐饮油烟影响分析

本项目食堂依托选厂生活区食堂,餐饮油烟废气均经油烟净化装置净化处理 后排放,食堂选用优质高效油烟净化装置去除效率应达到85%以上,可确保油烟 废气达标排放。

(8) 粉尘排放对萨瓦亚尔顿河影响分析

本工程运营期粉尘产生环节包括爆破、凿岩、运输过程、排土场无组织扬尘 等。

本工程人工阻隔方案采取布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流改道,在基建期组织实施,以减少对水体的影响。河道由露天河道改为盖板明渠和隧洞形式,矿山爆破、凿岩、运输粉尘对河道影响较小,并且采用湿式凿岩作业、微差爆破、雾炮降尘等废气治理措施,进一步减少粉尘进入河水内。井下废气从井下到达地面之前,要经过巷道,废气经巷道沉降后,浓度较低。矿井下粉尘的影响,以井下采场局部环境为主,粉尘排放对萨瓦亚尔顿河基本无影响。

运输扬尘产生于矿石外运,定期洒水降尘、保证路面适当湿度,可有效减轻运输扬尘的产生,对河水影响较小。定期对排土场和道路进行洒水抑尘,并采取

将废石压实、大粒径废石覆压等措施,项目产生的扬尘将会得到有效抑制,粉尘排放量将降低 80%以上。

为防止排土场水土流失和滑坡、减少排土场粉尘对外环境的影响,本次评价 要求排土场永久性坡面必须进行稳定化处理,每天定期洒水降尘。

2、大气环境影响预测分析

本项目大气环境影响评价等级为二级,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)的相关规定:"二级评价项目不进行进一步预测,只对污染物排放量进行核算"。故本次只对采用导则推荐的估算模型 AERSCREEN 进行估算,不进行进一步预测。

(1) 估算因子及评价标准

无组织废气预测因子: TSP。

评价区 SO₂、NO₂、PM₁₀、PM_{2.5}、CO、O₃、TSP 执行《环境空气质量标准》 (GB3095-2012) 二级标准,评价标准见表 5.2-3。

>>> >>h. #Am		浓度限值								
污染物	1 小时平均	8 小时平均	日平均	年平均	依据					
SO_2	0.50		0.15	0.06						
NO_2	0.20	_	0.08	0.04						
PM_{10}	_	_	0.15	0.07	GB3095-2012《环境					
PM _{2.5}	_	_	0.075	0.035	空气质量标准》(二					
CO	10	_	4		级)及其修改单(公					
O_3	0.20	0.16	_	_	告[2018]第 29 号)					
TSP	_	_	300	200						

表 5.2-3 环境空气质量评价标准 单位: mg/m3

(2) 预测范围

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中关于大气环境 影响评价范围的划分,确定本项目的大气预测范围为以采掘场为中心,边长 5km 的矩形区域。

计算污染源对评价范围的影响时,取东西向为 X 坐标轴、南北向为 Y 坐标轴,污染源位于预测范围的中心区域。

(3) 预测内容

大气环境影响预测内容依据评价工作等级和项目特点来定,预测内容如下: 正常工况下,各废气污染物的最大落地浓度及其距离,各废气污染物浓度随 距离变化对周围环境的影响值。

(4) 污染源计算清单

本次大气环境影响评价等级为二级,环评大气污染源调查范围为本项目无组织排放源。正常工况排放参数表见表 5.2-5。

		111W > W1				
污染源名称		污染源	评价标准	排放速率	源的释放	不规则面源(m)
行祭徒	界名	类型	(mg/m ³)	(kg/h)	高度(m)	占地面积(万 m²)
污染源 1	北排土场	面源	0.9	2.1	10	105.6
污染源 2	南排土场	面源	0.9	2.4	10	118.4

表 5.2-5 本项目正常工况排放参数表

(5) 大气环境影响预测结果

估算模型参数选取见表 5.2-6。

参	数	取值						
# 主 / 大 + 1	城市/农村	农村						
城市/农村选项	人口数(城市选项时)	/						
最高环境	竟温度/℃	42						
最低环均	-37							
土地利	草地							
区域温	是度条件	干燥气候						
日不去市地市	考虑地形	☑是 □否						
是否考虑地形	地形数据分辨率/m	90m						
	考虑岸线熏烟	□是						
是否考虑岸线熏烟	岸线距离/km	/						
	岸线方向/°	/						

表 5.2-6 估算模型参数表

由 AERSCREEN 估算模式计算所得污染物最大地面浓度占标率及对应距离 见表 5.2-7。

\$4 : H (4) 4 4 4 4 4 4 4 4 4 4 4 4 4							
序号	名称	最大落地浓度	最大浓度落地距离	P _{max} (%)			
12,2	12/17)	(μg/m ³)	(m)	P _{max} (%)			
1	北排土场扬尘	0.06822	565	7.58			
2	南排土场扬尘	0.07785	650	8.65			
-							

表 5.2-7 各污染物 Pi 计算结果

根据预测结果可知本项目有组织污染源中污染物最大地面浓度占标率小于10%,满足《环境空气质量标准》(GB3095-2012)二类区标准要求,对周围环境影响较小。

(7) 大气环境防护距离

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求,对于项目 厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染物短期贡献浓度超过 环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确 保大气环境防护区域外的污染物贡献浓度满足环境质量标准。

本项目经估算各污染物没有超出环境质量标准浓度限值,因此本次环评不设置大气防护距离。

(8) 非正常工况大气环境影响分析

本工程的大气环境非正常工况可能发生在破碎除尘系统不能正常工作的情况下,此时粉尘排放可导致井下工作环境恶化,项目所在区域的大气环境间接受到影响。假定非正常工况下为破碎除尘系统发生故障,故障时除尘效率降低至0, 且发生故障时未及时停车检修。非正常工段粉尘排放统计见表5.2-8。

沙二沙九 沙西	北丁港丁四 海外區		浓度	源强	源高	持续	排放量
污染源	非正常工况	污染物	(mg/m ³)	(kg/h)	(m)	时间	(kg)
3272m水平	除尘系统故障,除	粉尘	227	1.4.4	井下	20	7.0
破碎硐室	尘效率下降到0	初王	327	14.4	ガト	30min	7.2
2852m水平	除尘系统故障,除	业八八、	227	1 4 4	# +	20.	7.0
破碎硐室	尘效率下降到0	粉尘	327	14.4	井下	30min	7.2

表 5.2-8 非正常工况破碎除尘工段粉尘浓度统计

5.2.1.3 大气环境影响评价结论

根据 AERSCREEN 模式估算,项目 TSP 最大 1h 地面空气质量浓度为 0.07785mg/m³,占标率 8.65%。本工程大气污染物厂界贡献浓度无超标点,因此 不设置大气环境防护距离。本项目在采取本次评价提出的降尘措施后,可减轻对 周边大气环境的影响。

5.2.1.4 大气环境影响评价自查表

本工程大气环境影响评价自查表见表 5.2-9。

表5.2-9 建设项目大气环境影响评价自查表

_	 [作内容		自査项目								
评价等	评价等级	-	一级				二级	1		Ξ	三级□
级与范	证从共国	a L		\1			HV5 5	-01		过	长=5
围	评价范围	边长	:=5(JKM	1 		边长5~5	oukm□]	km√
评价因	SO ₂ +NO _x 排放 量	≥ 2000t/a□ 500~200						0t/	′a□	<5	500t/a√
子		基本污染物	勿()	SO	2、NO ₂ 、	PM _{2.5}	, PM ₁₀ , Co	Ο,	包括二	次PN	1 2 €□
	评价因子				O_3)						
			其	他	污染物	(TSP)			1 241		
评价标准	评价标准	国家标准√ 地方标准□				□方标准□		附录D□	其位	他标准	
	环境功能区		一类区□ 二类				二类[×ν	1		を区和二 を区ロ
*F (D) =	评价基准年					(2	2021)年				
现状评 价	环境空气质量 现状调查数据 来源	长期例往	 行监	测	数据□	主管部门发布的数据√				☆充监 测√	
	现状评价		 达标区 _□						不达标区√		
污染源调查	调查内容	本工程 本工程非 现有	正常	常排	‡放源√	拟替	其他在建、 拟替代的污染源□ 建项目污刻				区域污染源口
	预测模型	AERMOD	RMODADMS AUSTA				EDMS/AEI	DΤ	CALPUFF	网 模型 □	其他
	预测范围	边长≥50)km			边长	5~50km □]	边长	€ =	5 km √
	预测因子		预	测	因子(T	SP)		-/	包括二次二不包括二次		
大气环 境影响	正常排放短期 浓度贡献值	C本	工程	呈最	大占标	率≤100)%☑	(C本工程最大 100%		示率>
预测与 评价	正常排放年均	一类区	С	本	工程最为	て占标る	率≤10%□	C,	本工程最大		£>10%
	浓度贡献值	二类区 C本工程最大占标 ²				率≤30%□ С本工程最大			£>30%		
	非正常排放1h 浓度贡献值	非正常持续 长(0.5)		(非正常	占标率	≦≤100%□	C	非正常占标	率>	100%□
	保证率日平均	C	叠加	l 达	标 🗆		(C _柔	E加 不达标		

_	L作内容			É	查项目			
	浓度和年平均							
	浓度叠加值							
	区域环境质量							
	的整体变化情	k≤-	20% □			k>-20%	. .	
	况							,
	运为,加州东州东 加州	11年211日	7. (TCD)		有组织废气监测□			工业长加工
环境监	污染源监测	监侧囚"	子:(TSP)		无组织废气监测√			无监测□
测计划	环境质量监测	监测因子:(/)			无监			无监测
	小 児贝里 <u>品</u> 侧	<u> </u>	3丁:(/)		监测点位数(/) ☑			\square
	环境影响	可以接	受√		不可以接受 🗆			
证从法	大气环境防护		05		一田見に			
评价结	距离		详出 	. ())	[*] 界最远	() m		
论	污染源年排放	CO (/) #/-	NO (/) 4/-	田五小子 州四	(20.70) //	VOCs	: (1.303)
	量	SO_2 : (/) t/a	NOX:	/) t/a	秋 初:	(30.78) t/a		t/a
	注: " □ "	'为勾选项,	填 "√"	; "	"()"	为内容填写项	页	

5.2.2 地表水环境影响预测与评价

5.2.2.1 废水排放情况

(1) 露天采矿期

露天采矿期主要的废水为湿法凿岩废水、矿坑涌水、排土场淋溶水和生活污水。

①湿法凿岩废水

本项目凿岩用水量为 8.64m³/d, 优先采用矿坑涌水或井下涌水, 不足时由新鲜水补充。其产生的废水量很小, 渗入裂隙或自然蒸发不外排, 对项目区水环境影响较小。

②矿坑涌水

项目矿坑涌水(IV号矿带最大值为 4926.67m³/d,正常值为 3242.73m³/d; I 号矿带最大值为 280.11m³/d,正常值为 190.33m³/d),经絮凝沉淀处理后全部利用于采矿活动、地表洒水降尘,多余涌水运至选矿厂作为选矿作业补充水,无外排生产废水,对项目区周围水环境影响较小。

③排土场淋溶水

排土场淋溶水水质与废石成分、块度、堆存时间、堆存方式、气温和降雨量

等因素有关,一般无废水产生,在降雨月份才有可能产生淋溶水。本项目矿区年降水量 250mm,多年平均蒸发量 2400mm,蒸发量较大,平均降水量远小于蒸发量,因此废石场产生淋溶废水的可能性很小。对照《危险废物鉴别标准 浸出毒性鉴别》(GB5085.3-2007)的鉴别标准进行判别,本项目矿区废石属于 I 类一般固体废物,淋溶水水质相对较好,且一般雨水不足以使废石中的元素浸出,对区域水环境影响较小。

④生活污水

本项目运营后露天开采期间生活污水主要污染物为 SS、BOD、COD、NH₃-N等,生活污水直接排放将污染矿区地表土壤,导致土壤质量下降,同时存在污染地下岩石间隙地下水的可能性。同时建设的选矿厂建设地埋式一体化污水处理装置一座,生活污水经处理后达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准,可直接用于矿区绿化降尘,对项目区域水环境影响较小。

(2) 地下采矿期

地下采矿期的主要废水来源是矿坑废水和生活污水。

①矿坑废水

矿坑废水主要是由矿井地下涌水和少量的坑下采矿生产排水组成。矿井涌水量主要取决于矿区地质、水文地质特征、地表水系的分布、岩层土壤性质、采矿方法以及气候条件等因素。矿坑废水的性质和成分与矿床的种类、矿区地质构造、水文地质等因素密切相关。根据矿山采矿工艺和矿体的地质条件,矿体矿坑、矿井涌水及生产水污染因子主要为悬浮物,采矿生产废水中悬浮物浓度一般为300~3000mg/l。项目矿井涌水(IV号矿带最大值为4926.67m³/d,正常值为3242.73m³/d; I号矿带最大值为280.11m³/d,正常值为190.33m³/d),经絮凝沉淀处理后全部利用于井下采矿活动、地表洒水降尘,多余涌水运至选矿厂作为选矿作业补充水,无外排生产废水,对项目区周围水环境影响较小。

②生活污水

本项目运营后地下开采生活污水主要污染物为 SS、BOD、COD、NH₃-N 等, 生活污水经地埋式一体化污水处理装置处理后达到《城镇污水处理厂污染物排放 标准》(GB18918-2002)一级 A 标准,可直接用于矿区绿化和降尘,对项目区 域水环境影响较小。

5.2.2.2 生产废水对地表水水质的影响分析

(1) 生产废水对地表水水质的影响

生产用水主要为露天采矿、井下凿岩和工作面洒水降尘;采矿场、排土场、 道路及破碎硐室洒水降尘。

根据《新疆乌恰县萨瓦亚尔顿金矿勘探报告》,IV号矿带涌水量最大值为4926.67m³/d,正常值为3242.73m³/d; I号矿带涌水量最大值为280.11m³/d,正常值为190.33m³/d。根据人工阻隔方案,矿区采取布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流改道,在基建期组织实施,以减少对水体的影响。人工阻隔措施可以有效防止开采活动对水体造成污染影响,同时减少了地表水体对地下水的补给作用,在采取人工阻隔后,IV号矿带涌水量最大值为4926.67m³/d,正常值为3242.73m³/d; I号矿带涌水量最大值为280.11m³/d,正常值为190.33m³/d。涌水采用沉淀池絮凝沉淀处理,IV号矿带沉淀池容积为900m³,I号矿带沉淀池容积为275m³,絮凝沉淀处理后一部分由新铺设D326×6焊接钢管将水送至IV号矿带新建的900m³采矿生产新水及消防水池和I号矿带新建的300m³采矿生产新水及消防水池,一部分送至选厂生产新水及消防水池(1200m³)、生活区消防水池。

根据经验,矿井涌水中仅悬浮物浓度偏大,污水水质较为简单,无毒无害。 IV矿带南出入沟附近和 I 矿带平硐附近设置沉淀水池,经絮凝沉淀后作生产用水 回用。

本项目矿坑(井)涌水进行合理利用后不外排,因此,对区域地表水水质基本无影响。

(2) 生活污水对地表水水质的影响

本工程新增劳动定员 352 人。生活污水包括粪便污水、冲洗排水、淋浴排水等,水质比较混浊,有机含量较高,主要污染物为 COD、 BOD_5 、SS、 NH_3 -N、动植物油。灌溉期,生活污水经选矿厂地埋式一体化污水处理设施处理达标后用于矿山绿化和降尘; 非灌溉期, 尾水通过抽排水工程输送至选矿厂用于选矿生产。

项目运营期生活污水不外排,对区域地表水水质基本无影响。

(3) 排土场的淋滤水对地表水水质的影响

当进入排土场的雨水量和冰雪消融水大于场内废石的最大持水量时,多余的水份渗出形成排土场淋溶水,废石中部分被雨、雪水溶解的成份可能也随之流出,因此淋溶水中含有一定量的矿物元素。本工程废石浸出液中所有监测项目浓度值均低于《危险废物鉴别标准-浸出毒性鉴别》(GB5085.3-2007)和《污水综合排放标准》(GB8978-1996)中最高允许排放浓度,且 pH 值为 6~9,由此确定本工程产生的废石为第 I 类一般工业固体废物。排土场参照《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)对于第 I 类一般工业固体处置场所要求进行建设,当天然基础层饱和渗透系数不大于 1.0×10⁻⁵cm/s,且厚度不小于0.75m 时,可以采用天然基础层作为防渗衬层;当天然基础层不能满足防渗要求时,可采用改性压实粘土类衬层或具有同等以上隔水效力的其他材料防渗衬层,其防渗性能应至少相当于渗透系数为 1.0×10⁻⁵cm/s 且厚度为 0.75m 的天然基础层。

根据本工程区气象条件,本工程区平均降水量为 250mm,年平均蒸发量为 2400mm,可知项目区降雨量不大,排泄方式主要为地表蒸发排泄,平均降水量 远小于蒸发量,在该地区特殊的气候条件下废石淋溶水产生的量极小,很快通过 自然蒸发。由大气降水产生的淋溶水量很少,废石淋溶水渗透到地下水的可能性 极小。

评价要求在排土场外修建引流渠和收集池收集废石淋溶水,淋溶水通过引流 渠导入沉淀池澄清后用于生活区和场内运输道路除尘,自然蒸发损耗,应最大限 度的保护项目区水环境。

在生产过程中废石按规划合理堆放,且在采石场四周,尤其是在排土场拦渣 坝外修建截水沟,阻止了外围洪水对废石的冲刷,禁止排入地表水体。综上所述, 排土场不会对地表水造成影响较小。

(4) 洪水期影响分析

本工程洪水影响分析主要考虑采矿场、排土场及各工业场地等。

1) 矿山可能受洪水冲刷的地面污染物

矿山开发及正常生产条件下,矿区原有的地貌形态将发生较大改变,矿体开拓后,堆置的废石由于其相对松散,极易受洪水冲刷,同时也是诱发泥石流的重要因素。

2) 雨洪冲刷地面污染物对环境的影响

①雨洪对环境的影响

融雪水、大气降水本身是区域水资源的主要来源,暴雨洪流也是构成区域水 文环境的重点要素。矿山的开发活动增加了上述雨洪冲刷因素,可能诱发或促进 雨洪冲刷进程,进而可能对矿区水环境产生影响。

②洪水冲刷对矿山及矿区水文环境的影响

项目区年降水量为 250mm, 年平均蒸发量为 2400mm, 发生暴雨的频率不大,加之排土场均设计一定的防护措施,大的降雨形成洪流时,一般不致发生泥石流,较可能出现的不利情况是"壅水"现象,雨洪使堆场局部发生不同程度位移,但由于洪流量不足或坡度趋缓等原因,使水流被一定程度阻滞,洪水径流不畅,形成局部"壅水"现象,在降雨停止后逐步趋于稳定。

"壅水"现象的形成可能使局部地段的地表流态发生改变,或形成局部积水, 对矿区乃至外围的水文环境影响较小。

采区内及周边的季节性地表水体为萨瓦亚尔顿河,根据人工阻隔方案,矿区 采取布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流 改道,将上游汇水面积内的未污染的洪水疏导至人工河道内引至下游。各工业广 场地表污染水不外排,隔断对萨瓦亚尔顿河的污染影响;在矿区排土场下游实施 截洪沟,通过截洪沟将排土场及周边受影响的大气降水拦导至沉淀池,可容纳暴 雨时的污水,以实现清污分离。暴雨过后,雨水经澄清可用于场地降尘,自然蒸 发损耗,最大限度的保护项目区水环境。

由于矿山的截排水设施比较完善,洪水季节在矿山段不会冲刷大量水污染物, 且当地蒸发量大,故不会对地表水造成影响。

(5) 矿井涌水用于绿化对地表水环境的影响

本项目绿化用水来自生活污水生化处理后的生活污水和絮凝沉淀处理后的矿坑(井)涌水,水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准后,符合绿化用水水质要求,且项目绿化用水灌溉后进入水分进入土壤、被植物吸收,不排放地表水环境,本项目采用处理达标后的废(污)水绿化对地表水环境基本无影响。

(6) 矿井涌水事故排放

矿井涌水事故排放主要是指突水或井巷抽排水设备损坏或异常,造成矿井涌水无法正常抽送而涌入井下造成淹井。

1) 抽排水系统异常

因井下开采为连续作业,矿井涌水需连续抽送,故井巷抽排水工程在设计时已考虑到事故工况,所有抽排水设备均1用2备,可确保井巷抽排水工程正常工作。

2) 井下突水

若井下发生突水,矿井涌水将会从沉淀池溢出涌入井下,造成巷道淹没、设备破坏、井下人员伤亡和巨大经济损失,若大量涌水涌出地表,则造成对萨瓦亚尔顿河的水质污染。

为预防井下突水事件,本次评价提出下列要求:

A、采矿向地层深部延拓水平时,应注意地层深部导水断裂、节理裂隙的相对富集区对矿床开采的影响,做到有疑必探,先探后采,避免造成矿井突涌水事故的发生。

B、井下深部开采时,若遇断裂破碎带、节理、裂隙密集分布区等时应采取相应的防范措施,井下开采时应做好各个方向的超前探水工作,水地段和滴淋水处的进水状态是否变化,如果地下水量增大必须引起高度重视,按照"有疑必探,先探后掘"的原则做好防水工作。

C、加强开采过程中的矿坑涌水量观测台账记录工作。

事故处理要求: 矿井涌水事故排放时,应按照矿山制定的应急预案相关规定执行,迅速撤离井下作业人员,及时汇报调度室,并通知、组织受灾影响范围人员按避灾路线撤离灾区。采取帷幕灌浆措施阻隔地下水补给通道、积极采取井下抽排水工作等。

5.2.2.4 地表水环境影响评价自查表

-	匚作内容	自査项目
影	影响类型	水污染影响型 √;水文要素影响型 □
响	水环境保护目	饮用水水源保护区□;饮用水取水口 □;涉水的自然保护区 □;重要湿地 □;
识	标	重点保护与珍稀水生生物的栖息地 □;重要水生生物的自然产卵场及索饵

表 5.2-10 地表水环境影响评价自查表

	工作内容		自查	项目			
别		场、越冬场和洄游通道	、天然渔场等淮	业水体 □; 涉	步水的风景名胜区 □;		
		其他 √(萨瓦亚尔顿》	可)	_			
	目(11台) △ /刁	水污染影响	向型	水	水文要素影响型		
	影响途径	直接排放口; 间接排放口	□; 其他 √	水温 □; 径测	充 □; 水域面积 □		
		持久性污染物 □; 有毒	有害污染物 □;				
	影响因子	非持久性污染物 ;		水温 □; 水色	立(水深) □; 流速 □;		
	整가하다 1	pH 值 □; 热污染 □; 智	富营养化 □; 其	流量 □; 其他	也口		
		他口					
		水污染影响	向型	水	文要素影响型		
Ì	评价等级	一级 □; 二级 □; 三级 三级 B √	₹Α□;	一级 🗆; 二组	及 □; 三级 □		
		调查项目	1		数据来源		
	区域污染源	 己建□: 在建□:		排污许可证	□;环评 □;环保验收 □;		
	区域行案源		替代的污染源□	既有实测 □; 现场监测 □; 入河排放			
		15, Z. L. V		口数据 🗅; 其他 🗅			
		调查时期	月		数据来源		
	受影响水体水	丰水期 □; 平水期 √;	枯水期 🗆; 冰	生态环境保护	户主管部门 □; 补充监测		
	环境质量	封期 ロ まま - 恵去 - ひょ	- , b=	☑; 其他 √			
	区技业次派工	春季 □; 夏季 □; 秋季	≥√; 冬学 □				
现	区域水资源开 发利用状况	未开发 □; 开发量 40%	%以下 √;开发	走量 40%以上 □	量 40%以上 口		
】 状		调查时期		数据来源			
调	水文情势调查	丰水期 □; 平水期 □;	枯水期 口; 冰	水行政主管部门 □; 补充监测 □; 其			
查	74.54.114.54.44.7	封期		他 🗆			
		春季□;夏季□;秋季					
		监测时期		则因子 	监测断面或点位		
				、溶解氧、化			
		 丰水期 □; 平水期 □;		五日生化需氧 、阴离子表面			
	补充监测			磷、铅、锌、	监测断面或点位个数		
	TI JUILLING	111		、镉、高锰酸	(2) 个		
			钾指数、硫酸				
				 酸盐、砷、汞、			
			氟化	(物)			
现	评价范围	河流: 长度 (0.57) km	n; 湖库、河口及	近岸海域:面	积()km²		
状	2. 从田子	(pH、氨氮、溶解氧、	化学需氧量、	五日生化需氧量	、石油类、阴离子表面		
评	评价因子	活性剂、总磷、铅、锌	、铜、六价铬、	镉、高锰酸钾	指数、硫酸盐、氯化物、		

工作内容		自查项目						
价		挥发酚、硝酸盐、砷、汞、氟化物)						
		河流、湖库、河口: Ⅰ类 √; Ⅱ类 □; Ⅲ类; Ⅳ类 □; Ⅴ类 □						
	评价标准	近岸海域:第一类 🗅 第二类 🗅 第三类 🗅 第四类 🗅						
		规划年评价标准 (/)						
) = 14 = 1 He	丰水期 □; 平水期 ☑; 枯水期 □; 冰封期 □						
	评价时期	春季□;夏季□;秋季□;冬季□						
		水环境功能区或水功能区、近岸海域环境功能区水质达标状						
		况 (: 达标 √; 不达标 (
		水环境控制单元或断面水质达标状况 □: 达标 √; 不达标 □						
		水环境保护目标质量状况 □: 达标 ↓; 不达标 □						
		对照断面、控制断面等代表性断面的水质状况 口: 达标口;						
	评价结论	不达标 🗆	达标区 (/)					
		底泥污染评价 🗆	不达标区 (/)					
		水资源与开发利用程度及其水文情势评价 口						
		水环境质量回顾评价 🗆						
		流域(区域)水资源(包括水能资源)与开发利用总体状况、						
		生态流量管理要求与现状满足程度、建设项目占用水域空间						
		的水流状况与河湖演变状况 🗅						
	预测范围	河流:长度(/)km;湖库、河口及近岸海域:面积(/)km²						
	预测因子	(/)						
		丰水期 口; 平水期 口; 枯水期 口; 冰封期 口						
景》	预测时期	春季 □; 夏季 □; 秋季 □; 冬季 □						
响		设计水文条件 口						
预		建设期 □; 生产运行期 □; 服务期满后 □						
测	预测情景	正常工况 🗅 ; 非正常工况 🗅						
	4210/4/114241	污染控制和减缓措施方案 口						
		区(流)域环境质量改善目标要求情景 🗆						
	 预测方法	数值解 □:解析解 □;其他 □						
		导则推荐模式 🗆: 其他 🗅						
	水污染控制和							
	水环境影响减	 区(流)域水环境质量改善目标 □; 替代削减源 □						
	影 缓措施有效性							
响	评价							
评	1,	排放口混合区外满足水环境管理要求 ロ						
价	水环境影响评							
	价	满足水环境保护目标水域水环境质量要求 □						
		水环境控制单元或断面水质达标 🗆						

工作内容		自查项目						
		满足重点水污染物排放总量控制指标要求,重点行业建设项目, 主要污染物						
		排放满足等量或减量替代要求 🗆						
		满足区(流)域水环境质量改善目标要求 🗆						
		水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征响评价、生态流量符合性评价 □						水文特征值影
	对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括						应包括排放口	
		设置的环境合理	里性评价。]				
		满足生态保护红线、水环境质量底线、资源利用上线和环境准入清单管理要						
		求□		1			ı	
	污染源排放量	污染物名	称		排放量/ (t/a)		排放浓	炫度/ (mg/L)
	核算	(/)			(/)			(/)
	 替代源排放情	污染源名称	排污许可	方许可证编		排放長	遣/ (t/a)	排放浓度/
	况	137603-114	号	号		17.70.70	E/ (() (()	(mg/L)
		(/) (/) (/)			(/)	(/)		
	生态流量确定	生态流量: 一般水期() m³/s; 鱼类繁殖期() m³/s; 其他() m³/s						
	±30000±1947€	生态水位:一般水期()m;鱼类繁殖期()m;其他()m						
	下保措施 下保措施 「汚水处理设施□; 水文减缓设施□; 生态流量保障设施□; 区域 其他工程措施□; 其他 ☑					成削减 □; 依托		
	监测计划			£	不境质量		污	染源
防治		监测方式		·动 □; 自动 □; 无监测 (/)		手奏	手动 □; 自动 □; 无监测 □	
措		监测点位		(/)			(/)	
施		监测因子		(/)			(/)	
	污染物排放清 单							
ì	平价结论	可以接受図 ; 不可以接受 🗆						
注:"□"	为勾选项,可√;	"()"为内容	· 字填写项;	"备	注"为其他补充	内容。		

5.2.3 地下水环境影响预测与评价

5.2.3.1 矿区水文地质条件

一、矿区水文地质特征简述

IV号矿带和 I 号矿带位于勘探区范围内,总体为分水岭的地形、地貌特征IV 号矿带走向为北东-南西向,00-75 线间萨瓦亚尔顿河在IV号矿带各矿体上盘流经,并在 00-03 线处穿越IV号矿带流出矿区,通过处水位标高为 3401 米;萨瓦亚尔顿河主要接受冰雪融水、大气降水及少量地下水补给,一般情况下(除暴雨、洪

水期)河床宽 1.05-3.07m,断面水深 0.05-0.3m,流速 0.76-1.54m/s;5 月下旬至6 月初为洪水期,4 月至 5 月中旬、6 月中旬至 10 月底为枯水期,11 月至次年 3 月为冰封期。

按地下水赋存状态特征,矿区所在区域地下水可分为冻结层上水和冻结层下水; 冻结层下水按照地层时代及其成因的不同分为第四系松散堆积物孔隙水、基岩裂隙水、构造裂隙水和碳酸盐岩类裂隙、溶隙水。

1、冻结层上水

呈岛状、不连续脉状分布于 3700 米(标高)以上阴坡和 3750 米(标高)以上阳坡的基岩山脊,地下水赋存于基岩强风化带裂隙及张性-张扭性构造裂隙中。水量受气温和降水制约,相态、动态均不稳定,受季节影响变化较大。冻结层上水主要接受降水和冰雪融水补给,其融层中的液态水沿裂隙以侧向径流方式补给冻结层下水或以泉的形式排泄出地表,流量范围为 0.003-0.325L/s,一般小于 0.1L/s, 冻结层上水整体富水性弱。

2、冻结层下水

(1) 第四系松散岩类孔隙水

主要分为第四系冲洪积物孔隙水和残坡积物孔隙水:

第四系冲洪积物多分布于区域内主要沟谷中,含水层岩性为冲洪积成因的卵砾石、砂砾石、砂和少量粘土类矿物等,含水层孔隙发育,储水空间良好,水位埋深一般小于2米。第四系残坡积物多分布于山坡至坡脚地带,分布面积较广,主要由碎石、亚砂土等组成,孔隙发育,储水空间良好,厚度变化大,沿坡面由上至下厚度增大,一般厚1-20米。

第四系松散堆积物孔隙水直接受大气降水、冰雪融水和基岩裂隙水等的补给, 局部地带又以泉的形式补给地表河水,或下渗补给下部基岩裂隙水,少部分以垂 直排泄的方式消耗于蒸发。

松散堆积物孔隙泉单泉流量为 0.02-4.625L/s,一般为 0.1-1.0L/s,第四系松散 岩 类 孔 隙 水 总 体 富 水 性 弱 - 中 等; 水 化 学 类 型 为 HCO_3 -Ca-Mg 或 HCO_3 - SO_4 -Ca-Mg 型水。

(2) 基岩裂隙水

主要以层状岩类裂隙水和块状岩类裂隙水为主。

层状岩类裂隙水赋存于下古生界的千枚岩和变砂岩中,主要接受上部冰雪融水、冻结层水的补给;补给水源较充沛,丰水期时出露泉点较多,但单泉流量一般小于 0.001L/s 且持续时间不稳定。

矿区水文地质勘探工作期间共发现8个流量大于0.1L/s且持续涌水的层状岩类裂隙泉,泉水流量为0.02-0.61L/s,基岩裂隙水富水性弱,水化学类型多为HCO₃-Ca·Mg型水。

矿区内仅见少量岩浆岩脉发育,主要岩性为二长岩脉和辉绿岩脉,分布面积较小,岩体表层风化裂隙发育,赋存有少量的裂隙水,工作期间未发现区域内有块状岩类裂隙泉水出露,推测其富水性弱。

(3) 碳酸盐岩类裂隙、溶隙水

主要赋存于石炭系的灰岩、结晶灰岩中,其溶隙、溶洞较不发育。溶隙水主要补给来源为大气降水,水文地质勘探工作期间未发现区域内有碳酸盐岩类溶隙 泉水出露,推测碳酸盐岩类裂隙、溶隙水富水性弱。

(4) 构造破碎带裂隙水

区域上发育的吉根-萨瓦亚尔顿大断裂(F15号断裂)和伊尔克什坦断裂(F12号断裂),断裂剪切挤压十分强烈,一般发育有一系列张性-张扭性小构造破碎带和少量断层泥、断层角砾,断裂多起到阻水的作用,形成含水层;主要接受大气降水、冰雪融水和两侧基岩含水层的补给,在其迎水一侧,赋存有少量的构造破碎带裂隙水。

矿区水文地质勘探工作期间,未发现构造裂隙泉点出露;在施工平硐内发现少量构造破碎带裂隙水出露,其多数呈面状渗出,少数呈线状涌出,单点涌水量一般小于 0.2L/s, 且涌水量会逐渐减小。

构造破碎带裂隙水整体富水性弱-中等,因赋水空间的不均匀,构造破碎带 裂隙水富水性亦随地段变化而不同;今后矿床开采过程中,应注意对井巷突水事 故的预防及应急处理。

(5) 地下水的补径排特征

矿区内松散岩类孔隙水和基岩裂隙水受大气降水、冰雪融水及地表河水的直接补给,松散岩类孔隙水一部分在区内沟谷中以泉的形式出露地表,汇入河流以地表水的方式排泄;一部分在地下潜流,通过松散堆积物、构造断裂及裂隙,以

侧向地下径流的方式,补给海拔更低处的松散堆积物孔隙水、地表河水及坡积物下伏的基岩地层裂隙水,或排泄至更低处的地下水中;另一部分则通过地表蒸发、植物蒸腾等以垂向的方式排泄,回到大气中。基岩地层中的基岩裂隙水,在裂隙的控制下赋存、径流和运移,通过裂隙以侧向地下径流的方式,由高海拔处向低海拔处排泄出矿区,形成补给区、径流区和排泄区基本一致的特点,具有中高山区地下水、地表水互相补排的普遍特征。

二、矿区水文地质条件

(一)含水岩组划分

1、含水岩组与相对隔水层的划分原则

区内地下水主要赋存于基岩裂隙及第四系残坡积物、冲洪积物孔隙中,具有独特的的水文地质特征。根据地下水的赋存条件、水力性质及水力特征,划分含水岩组和相对隔水层。

2、含水岩组具体划分

依照矿区地层时代及其成因的不同,将首采区含水岩组细分为四个含水岩组 (见表 5.2-11)。

含水岩组	岩性	地下水 类型	富水性
第四系全新统松散堆积物 含水岩组	第四系全新统冲洪积物和第四系全新 统残坡积物	孔隙水	始
下泥盆统萨瓦亚尔顿组含 水岩组	主要为含炭绢云千枚岩夹薄层变质细砂岩,局部为中厚层变质细砂岩夹含炭 绢云千枚岩	裂隙水	弱
上志留统塔尔特库里组含 水岩组	薄层变质粉砂岩与含炭绢云千枚岩互 层	裂隙水	弱
构造破碎带含水岩组	主要为碎裂岩、局部为黄铁矿化、毒砂 化变质粉砂岩与含炭绢云千枚岩互层	裂隙水	松

表 5.2-11 萨瓦亚尔顿金矿首采区含水岩组划分一览表

①第四系全新统松散堆积物(Q4)孔隙水含水岩组

根据成因不同,划分为两个亚层:

第四系全新统冲洪积(Q4apl)含水层,主要分布于萨瓦亚尔顿河谷内,主要成分为冲洪积成因的卵砾石、砂砾石、砂和少量粘土类矿物等,含水层厚一般

为 4.4-32.2 米, 平均值为 13.11 米 (见表 5.2-12); 冲洪积物孔隙发育,储水空间良好,主要接受大气降水、溪水、河水渗入及上游基岩裂隙水补给,水位埋深一般小于 2 米。

农 3.2-12							
孔号	第四系厚度(米)	孔号	第四系厚 度(米)	孔号	第四系厚 度(米)	孔号	第四系 厚度(米)
ZK0001	9.07	ZK1106	32.20	ZK1115	5.40	ZK4312	20.58
ZK0003	7.40	ZK1107	6.43	ZK2705	10.00	ZK4313	23.50
ZK0004	5.08	ZK1111	8.30	ZK2706	4.41	ZK4314	18.90
ZK1105	26.09	ZK1113	12.10	ZK4310	15.27	ZK4315	5.10
萨瓦亚尔顿金矿首采区冲洪积物厚度平均值为13.11米。							

表 5.2-12 萨瓦亚尔顿金矿采区冲洪积物厚度一览表

第四系全新统残坡积(Q4edl)含水层,不均匀分布于山坡坡面,厚度一般在 1.6-44.5 米,平均值为 14.18 米;残坡积物主要由碎屑、亚砂土、亚粘土及少量的岩石风化碎块等组成,孔隙发育,具有良好的储水空间;主要接受大气降水、冰雪融水补给,构成含水层,该含水层主要下渗补给下部基岩裂隙水。

水文地质勘探工作期间在采区范围内未发现第四系全新统松散堆积物孔隙 泉水,仅见个别细小水流在沟谷底部流出,流量小于 0.01L/s(堰板测得)且水流涌出时间一般小于 48 小时;采区附近的第四系全新统松散堆积物孔隙泉流量一般为 0.1-0.8L/s。

采区第四系全新统松散堆积物孔隙水化学类型为 HCO₃ • SO₄-Ca • Mg 型水, 含水岩组总体富水性弱。

农品 10							
孔号	第四系厚 度(米)	孔号	第四系厚 度(米)	孔号	第四系厚 度(米)	孔号	第四系 厚度(米)
ZK0007	9.70	ZK1118	44.54	ZK2711	4.75	ZK4304	18.55
ZK0011	8.35	ZK2703	4.97	ZK2713	8.14	ZK4305	13.00
ZK1103	16.45	ZK2707	5.17	ZK2717	16.70	ZK4306	22.17
ZK1104	26.17	ZK2708	7.80	ZK4301	1.62	ZK4308	13.90
ZK1117	11.40	ZK2710	7.91	ZK4303	13.80	ZK4322	28.50
萨瓦亚尔顿金矿首采区残坡积物厚度平均值为14.18米。							

表 5.2-13 萨瓦亚尔顿金矿采区残坡积物厚度一览表

②上志留统塔尔特库里组(S2t)裂隙水含水岩组

该含水岩组为IV号矿体的顶板,主要岩性为薄层变质粉砂岩与含炭绢云千枚

岩互层,局部为变质细砂岩、变质粉砂岩、含炭绢云千枚岩三者互层。含水岩组内地下水类型为裂隙水,赋存于基岩裂隙中,地下水的赋存空间、裂隙的连通性等随地段的变化而变化。

钻孔抽水试验取得塔尔特库里组裂隙含水层的 q 值为 0.00543L/s·m; 硐探施工过程中, 塔尔特库里组地层内未发生突水事故, 硐内地下水多呈面状渗出、滴落; 局部地段因裂隙的发育及裂隙间连通性较良好, 存在地下水汇集现象, 但地下水量总体不大, 偶见地下水呈线状、股状流出, 流量小于 0.2L/s, 且流量迅速较小至断流。

塔尔特库里组裂隙水含水岩组地下水类型为 HCO₃·SO₄-Ca 或 HCO₃·SO₄-Ca·Mg型水,岩组总体富水性弱。

③下泥盆统萨瓦亚尔顿组(D1sw)裂隙水含水岩组

该含水岩组为IV号矿体的底板,主要岩性为含炭绢云千枚岩夹薄层变质细砂岩,局部为中厚层变质细砂岩夹含炭绢云千枚岩。含水岩组内地下水类型为裂隙水,赋存于基岩裂隙中,地下水的赋存空间、裂隙的连通性等随地段的变化而变化。

勘探钻孔抽水试验验证了IV号矿体底板(即萨瓦亚尔顿裂隙含水岩组)内无明显充水含水层存在。钻孔施工至该含水岩组内,泥浆消耗量较上部地层亦无明显变化。硐探施工过程中,萨瓦亚尔顿裂隙含水岩组内大部分地段岩石呈湿润状,局部地段地下水呈面状渗出、滴落;局部地段因裂隙的发育及裂隙间连通性较良好,存在地下水汇集现象,但地下水量总体不大,偶见地下水呈线状、股状流出,流量小于 0.85L/s,且流量逐渐较小至断流。

萨瓦亚尔顿裂隙水含水岩组地下水类型为 HCO₃·SO₄-Ca·Mg 型水,岩组总体富水性弱。

④构造破碎带裂隙水含水岩组

该含水岩组即为IV号矿体,主要岩性为碎裂岩、局部为黄铁矿化、毒砂化变质粉砂岩与含炭绢云千枚岩互层。

该含水岩组的划分依据为:矿区内主矿体(IV号矿体)发育于吉根-萨瓦亚尔顿大断裂(F15号断裂)内。该构造破碎带在矿区内出露长度约7.8公里,向北东延伸出境,向南延伸至吉根地区;根据钻孔水文工程地质编录可知,该破碎

带宽度一般在 10-80 米,延伸方向与矿体近似平行。破碎带的上下两个面由于受张扭作用的影响,曲折起伏、陡缓交错,走向 20°~35°,倾向 298°~305°,倾角在 42°~88°之间变化。构造破碎带内构造岩以碎裂岩为主,其次为糜棱岩,局部有角砾岩和断层泥;其中,碎裂岩在破碎带分布最为广泛。

构造破碎带内发育有一系列张性-张扭性小构造破碎带和少量断层泥、断层 角砾,断裂多起到阻水的作用,形成含水层;主要接受大气降水、冰雪融水的补 给,在其迎水一侧,赋存有少量的脉状裂隙水。含水层厚及其富水性度随地段及 破碎带的变化而不同。

钻孔施工至破碎带内,泥浆消耗量较上部、下部地层的钻进泥浆消耗量大部 无较大差异,仅局部存在明显变化。硐探施工穿过IV号矿体时,该岩组(破碎带) 内大部分地段地下水呈面状渗出、滴落;偶见局部极破碎或裂隙极发育的地段内 地下水呈线状、股状流出,单点涌水量小于 1.0L/s,且涌水量会时间逐渐减小, 直至断流。构造破碎带裂隙水含水岩组地下水类型为 HCO₃·SO₄-Ca·Mg 型水,岩 组总体富水性弱。

3、相对隔水层

表层风化壳以下且远离断层破碎带的基岩,新鲜完整,节理裂隙不发育,且 多闭合:层状岩体的层理面结合紧密,导水性差,储水空间差,视为相对隔水层。

- 4、地下水与地表水及各含水层间的水力联系
- (1) 地下水与地表水之间的水力联系

矿区(床)内地下水与地表水之间互补频繁,"两水"交替转换,水力联系密切。矿区内地下水与地表水之间总体上呈地下水补给地表水,形成沟谷溪流,汇入河流,最终流出矿区外。

(2) 各含水层之间的水力联系

首采区内含水层主要为第四系残坡积孔隙含水层和基岩裂隙含水层,各含水层间的水力联系密切,主要方式以侧向径流、垂直下渗和排泄为主,其补给关系取决于地形、地貌、地势的高低等条件,由地势高的含水岩组补给地势低的含水岩组,最终排泄于地势更低处的溪沟河流或含水岩组中。

采区内地表水、地下水水质基本相同,均为 HCO₃·SO₄-Ca·Mg型水。萨瓦亚尔顿河上游流量小于下游流量。说明在地下水位以上,总体呈地下水补给地表水;

但当矿体开采至地下水位之下后, 地表水以及浅部的地下水可通过下渗沿井巷上部的裂隙或者导水裂隙带渗入井巷, 补给地下水, 成为矿坑充水水源。

(二) 地下水补给、径流、排泄条件

矿区内松散岩类孔隙水和基岩裂隙水受大气降水、冰雪融水及地表河水的直接补给,松散岩类孔隙水一部分在区内沟谷中以泉的形式出露地表,汇入河流以地表水的方式排泄;一部分在地下潜流,通过松散堆积物、构造断裂及裂隙,以侧向地下径流的方式,补给海拔更低处的松散堆积物孔隙水、地表河水及坡积物下伏的基岩地层裂隙水,或排泄至更低处的地下水中;另一部分则通过地表蒸发、植物蒸腾等以垂向的方式排泄,回到大气中。基岩地层中的基岩裂隙水,在裂隙的控制下赋存、径流和运移,通过裂隙以侧向地下径流的方式,由高海拔处向低海拔处排泄出矿区,形成补给区、径流区和排泄区基本一致的特点,具有中高山区地下水、地表水互相补排的普遍特征。

(三) 矿区地下水化学及动态特征

1、第四系松散堆积物孔隙水

矿区内第四系松散堆积物孔隙水化学类型为 HCO₃·SO₄-Ca·Mg 或 SO₄·HCO₃-Ca·Mg 型水, 矿化度为 0.167-0.476g/L, 总硬度为 0.132-0.361g/L, pH 值为 8.22-8.56。

第四系松散堆积物孔隙水为 pH 值弱碱性, 硬度较低的淡水。

2、基岩裂隙水

矿区内基岩裂隙水化学类型为 HCO₃-Ca·Mg 或 SO₄·HCO₃-Ca·Mg 型水,矿化度为 0.208-1.044g/L,总硬度 0.061-0.735g/L,pH 值为 6.82-7.98。

矿区内基岩裂隙水为 pH 值弱碱性, 硬度较低的淡水。

3、矿区地下水动态特征

(1) 水化学特征:据 1999 年萨瓦亚尔顿金矿普查地质报告资料可知,当时矿区内地下水化学类型基本分为 HCO3·SO4-Ca·Mg 和 HCO3-Na·Ca 型水两种,其中又以 HCO3·SO4-Ca·Mg 型水为主;硬度为 0.021-0.662g/L,pH 值为 7.45-8.50。现阶段矿区内地下水为 HCO3-Ca·Mg 和 HCO3·SO4-Ca·Mg 型水;硬度为 0.061-0.735g/L,pH 值为 6.82-7.98。说明矿区内地下水化学类型已发生一定变化,但变化不大,矿区内地下水均以 HCO3·SO4-Ca·Mg 型水为主,Na 离子的含量在

降低; 地下水硬度基本无变化, pH 值略微减小; 矿区内地下水质依然良好。

(2) 矿区内地下水主要接受大气降水、冰雪融水及地表河水的直接补给,又主要以侧向径流的方式向地势更低处运移,故含水层富水性与补给量呈正比。其中,大气降水又是最主要影响因素,降水多时,含水层水量增加,水位抬升,地下水质变淡;降水少时,含水层水量减少,水位降低,地下水质变浓。在矿区内不同地段,地形和地质条件直接影响地下水渗透补给和排泄条件,故不同地段和含水层内,地下水的富水性会存在较大或较明显的差异。地下水化学作用以溶滤作用为主,水质受岩石特性、补给源、排泄条件等的综合影响,具有明显的分带性和一定的季节性;深层地下水由于运移速度较慢,其水化学特征还具有明显的滞后性。

(四) 矿床充水因素

- 1、地层:矿区主矿带(IV号矿带)位于矿区中部,矿体顶板为上志留统塔尔特库里组(S3t),岩性为一套薄层状变质粉砂岩与含炭绢云千枚岩互层;底板岩性以含炭绢云千枚岩夹薄层变质细砂岩为主,局部为中厚层变质细砂岩夹含炭绢云千枚岩。采区地下水静止水位标高平均值为:3442.156米。
- 2、含水层富水性:顶、底板岩石仅在风化壳存在发育的风化裂隙和部分构造裂隙,风化壳以下岩石新鲜完整,岩层层理面结合紧密,裂隙不发育,不利于地下水沿岩层渗透,为弱含水层。矿床充水主要来自于构造破碎带含水层中的构造裂隙脉状水,富水性弱。
- 3、河流:萨瓦亚尔顿河沿IV号矿带径流,并在 00-03 线间穿越IV号矿带,最终流出矿区。河水将通过下渗补给下部含水层或经裂隙、构造破碎带直接进入矿床,为矿床充水的重要因素。
- 4、构造破碎带: IV号矿带发育于 F15 号断裂带内,该断裂带内发育有一系列张性-张扭性小构造破碎带和少量断层泥、断层角砾,断裂多起到阻水的作用,形成含水层;含水层厚及其富水性度随地段及破碎带的变化而不同;构造破碎带总体富水性弱,局部地段富水性中等。在硐探水文、工程地质调查时观测到,当硐探掘进穿过构造破碎带处见有地下水沿构造裂隙呈脉状流出;当硐探掘进穿过矿体时,在矿体中见有渗水、滴水现象,水量较小。
 - 5、矿床未开采时地下水处于饱和、静止状态,矿床开采后由于出现采空区,

从而打破地下水的静止平衡状态,使得顶、底板弱含水层及构造破碎带含水层中的地下水向矿坑渗流。

6、充水水源

矿床开采时,可能进入矿坑的水源主要有地表水和地下水两种水源。

地表水水源: 地下采矿时, 地表河水、大气降水、冰雪融水可通过井巷入口直接流入井巷、矿坑; 或经下渗、通过井巷上部的裂隙或者导水裂隙带渗入井巷, 成为矿坑充水水源。

地下水水源: 地下采矿时, 当井巷通过基岩裂隙带、构造破碎带或者导水裂隙带时, 基岩裂隙水、构造裂隙水便会渗入、涌入巷道, 成为矿坑充水水源。

7、矿床充水方式

矿床开采时,充水水源进入矿坑的方式主要为直接和间接进水:露天开采时降水、冰雪融水直接落入矿坑,当地下开采矿体时,降水、冰雪融水通过坑道上部的裂隙或者是导水裂隙带间接渗入矿坑;地表水通过矿体顶底板与围岩的接触裂隙带、构造裂隙带或者是导水裂隙带间接渗入矿坑;河谷潜水通过发育的裂隙及导水裂隙带下渗,间接进入矿坑。

5.2.3.2 矿山开采对地下水环境影响分析

1、生活污水对地下水的影响

生活污水产生量为 9.12m³/d(3009.6m³/a)。生活污水包括粪便污水、冲洗排水、淋浴排水等,水质比较混浊,有机含量较高,主要污染物中 COD、BOD5、SS、NH3-N、动植物油,主要污染物中 COD、BOD5、SS、NH3-N、动植物油的产生浓度分别为: 320mg/m³、200mg/m³、360mg/m³、25mg/m³、40mg/m³。生活污水经同时建设的选矿厂地埋式一体化污水处理设施(处理规模: 15m³/h)处理达标后用于矿山绿化和降尘; 非灌溉期,尾水通过抽排水工程输送至选矿厂用于选矿生产,不会对矿区地下水造成影响。

2、湿式凿岩废水对地下水的影响

本工程凿岩废水量较少,不会下渗至地下含水层并且影响地下水水质。

3、采矿期涌水对地下水位的影响

为了安全生产的需要,必须把井下巷道内的积水抽出,即矿井涌水。涌水对 地下水的影响主要反映在以下几方面: 矿井(坑)疏干后对被截流的地下含水层要产生一个降落漏斗,其影响半径 范围内若有天然露头泉就会干枯,其周围靠泉水滋润的湿地就会消失。

矿山开采过程中形成一个降落漏斗,成为基岩裂隙水的一个排泄点,从矿井 (坑)中排出。由于本矿下游无人工取水井,故不存在吊泵,影响取水的情况发 生,矿区范围无泉眼和湿地,不存在泉眼水位下降和湿地消失问题,因此矿井涌 水对地下水的影响很小。

本工程实施人工阻隔方案,采取布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流改道,在基建期组织实施,以减少对水体的影响。此外,各场地地面进行防渗硬化、场地四周设挡水坝、上游设截洪沟,减少矿区范围内地表水对地下水的补给量,以有效防止露天+地下开采对地下水的影响。

4、机修间、柴油储罐对地下水的影响

为防止机修间、柴油储罐发生跑冒滴漏现象从而污染地下水,机修间及柴油储罐区地面均为混凝土结构,防渗系数小于10⁻¹⁰cm/s,可有效防止石油类渗漏。同时,对储运过程产生的危险废物按照《危险废物贮存污染控制标准》(GB 18597-2001)及修改单的要求采用相应的容器进行收集暂存,定期交由有危险废物处置资质的单位进行处置,不会对地下水产生影响。

5、废石堆场淋溶水

废石堆场淋溶水中含有一定量的矿物元素。本工程废石浸出液中所有监测项目浓度值均低于《危险废物鉴别标准-浸出毒性鉴别》(GB5085.3-2007)和《污水综合排放标准》(GB8978-1996)中最高允许排放浓度,且 pH 值为 6~9,由此确定本工程产生的废石为第 I 类一般工业固体废物,可按照第 I 类一般工业固体废物处理。

综上所述,本工程正常工况下,生产废水、生活污水达标处理后均有效利用,不外排,同时对各类池体进行防渗处理后,可有效防止项目废水对区域地下水环境的污染影响。

5.2.3.3 对地下水水质的预测影响分析

本工程属于《环境影响评价技术导则 地下水环境》(HJ610-2016) 附录 A 地下水环境影响评价行业分类表中的"H 有色金属"中"47 采选"类,确定本工程所属的排土场地下水环境影响评价项目类别为 I 类,排土场地下水环境影响评

价级别为二级,采用解析解或类比法进行污染预测。本次采取解析解进行预测。

本次模拟预测,根据污染风险分析的情景设计,在选定优先控制污染物的基础上,分别对地下水污染物在不同时段的运移距离、超标范围进行模拟预测,污染情景的源强数据通过工程分析类比调查予以确定。

(1) 预测情景及预测因子

①影响途径

生产废水能否进入含水层取决于地质、水文地质条件和工程采取的防渗漏措施。对于承压水层由于上部有隔水顶板,只要废水不进入补给区,就不会污染地下水。对于潜水含水层,若其顶板为厚度不大的强透水层,废水则有可能通过隔水顶板进入含水层。由于潜水含水层的埋藏特点,导致其在任何部位都可接受补给,污染的危险性较大,其能否被污染取决于包气带的土壤性质和厚度,包气带中的细小颗粒可以滤去吸附某些污染物质。当废水分布于流域系统的补给区时,随着时间延续,污染物质将沿流线从补给区向排泄区逐渐扩展,最终可波及整个流动系统。当污染源位于排泄区,污染影响的范围比较局限,对地下水的影响较小。

本工程开采产生的废石堆存于露天排土场,因大气降水的淋溶及空气氧化作用可能会使废石中有害物质溶出而对矿区土壤及水环境产生污染。排土场在晴天和旱季时无废水外排,在雨天和雨季才有废水外排,其废水产生量与排土场的汇水面积、当地降雨量和地表径流系数等因素有关。因此本次评价选择雨季大气降水对开采废石的淋融作用对地下水环境的影响进行预测。

②污染因子及浓度确定

根据对本工程矿石进行浸出试验,浸出试验表明,各项有毒有害元素浓度均未超过《危险废物鉴别标准-浸出毒性鉴别》(GB5085.3-2007)中的标准要求,因此本工程废石不具有危险特性,为一般固体废物。同时浸出液中所有监测项目浓度值均低于《污水综合排放标准》(GB8978-1996)中最高允许排放浓度,且pH值为8.64,由此确定本工程产生的废石为第I类一般工业固体废物。

本次环评污染物源强采取最不利情况,即浓度较大且危害较大的的污染因子的浓度作为预测浓度。因此,根据固废浸出毒性监测报告,镍的污染源强为0.16mg/L,为标准指数最大的监测因子。以《地下水质量标准》(GB/T14848-2017)

Ⅲ类为标准,将镍的浓度超过 0.02mg/L 作为控制指标。

(2) 预测模型

采用解析模型预测污染物在含水层中的扩散时,一般应满足以下条件:①污染物的排放对地下水流场没有明显的影响;②预测区内含水层的基本参数(如渗透系数、有效孔隙度等)不变或变化很小。通过对本期工程污染物排放特征及水文地质概况分析可知,本次污染预测可满足以上条件。

为了揭示污染物进入地下水体后,地下水质的时空变化规律,将污染场地地下水污染物的溶质迁移问题概化为污染物连续注入的一端定浓度的一维水动力弥散问题。预测按最不利的情况设计情景,污染物泄漏直接进入地下水,并在含水层中沿水力梯度方向径流,污染质浓度在未渗入地下水前不发生变化,不考虑污水在包气带中下渗过程的降解与吸附作用,不考虑含水层中对污染物的吸附、挥发、生物化学反应。设计情景为极端情况,用于表征污水排放对地下水环境的最大影响程度和影响范围。

根据本工程污染特征分析,排土场地下潜水流向基本与地形一致,呈北向南下游方向径流的线状特征;污水渗漏是一个长期的过程,在区域上可假定为定浓度的渗漏点。

本次地下水环境影响预测评价采用一维地下水污染物运移数学模型的解析解进行预测,解析解选取《环境影响评价技术导则 地下水环境》(HJ 610-2016)中地下水溶质运移解析法推荐模型。

(3) 预测范围及时间

预测范围与评价范围一致,排土场在暴雨条件下淋溶水可能对地下水影响分析。

预测时间为100d、500d、1000d。

(4) 预测参数设定

本工程采用地下水溶质运移解析法中的用一维稳定流动一维水动力弥散问题

进行预测及评价, 预测模型如下:

$$C(x, y, t) = \frac{m_{M}/M}{4\pi nt \sqrt{D_{L}D_{T}}} e^{-\left[\frac{(x-ut)^{2}}{4D_{L}t} + \frac{y^{2}}{4D_{T}t}\right]}$$

178

式中:

x,y—计算点处的位置坐标;

t—时间, d;

C(x, y, t) — t 时刻点 x, y 处的污染物浓度, mg/L;

M—含水层厚度, m:

m_M—长度为 M 的线源瞬时注入示踪剂的质量, mg;

u—地下水流速度, m/d:

n—有效孔隙度, 无量纲:

DL—纵向 x 方向的弥散系数, m²/d;

DT—横向 y 方向的弥散系数, m²/d;

π—圆周率。

利用所选取的污染物迁移模型,能否达到对污染物迁移过程的合理预测,关键就在于模型参数的选取和确定是否正确合理。

由上述模型可知,模型需要的参数有:外泄污染物质量 m;有效孔隙度 n;水流的实际平均速度 u;污染物在含水层中的纵向弥散系数 D_L ;这些参数主要由勘察成果资料来确定:

露天排土场淋溶水携带镍排放量为 0.1kg。

含水层的厚度 M: 根据本次搜集的地勘资料和以往水文地质资料,可知含水层厚度以 282.16m 计。

含水层的平均有效孔隙度 n: 含水层密实程度为中密,根据《水文地质手册》,可取孔隙度为 0.35,而根据以往生产中经验,有效孔隙度一般比孔隙度小10%~20%,因此本次取有效孔隙度 n=0.35×0.8=0.28。

水流实际平均流速 u: 根据含水层岩性等相关资料,确定含水层渗透系数为 0.04244m/d(采用 ZK7505 孔内最大渗透系数)。

水力坡度
$$I = \frac{dh}{dS} = 0.3025;$$

因此地下水的渗透流速:

 $V=KI=0.04244m/d\times0.3025=0.013m/d$

平均实际流速 u=V/n=0.046m/d。

纵向 x 方向的弥散系数 DL:

参考 Gelhar 等人关于纵向弥散度与观测尺度关系的理论,通常弥散度随着溶质运移距离的增加而加大,这种现象称之为水动力弥散尺度效应。其具体表现为: 野外弥散试验所求出的弥散度远远大于在实验室所测出的值; 即使是同一含水层,溶质运移距离越大,所计算出的弥散度也越大。将世界范围内所收集到的百余个水质模型中所使用的纵向弥散度aL 绘在双对数坐标纸上,从图上可以看出纵向弥散度aL 从整体上随着尺度的增加而增大(图 5.2-1)。基准尺度 Ls 是指研究区大小的度量,一般用溶质运移到观测孔的最大距离表示,或用计算区的近似最大内径长度代替。故本次参考以往研究成果,考虑距污染源下游约 2000m的研究区范围,因此,本次模拟取弥散度参数值取 14.83m。

图 5.2-1 $lg\alpha_L - lg\alpha_s$ 关系图

模型计算中纵向弥散度选用14.83m。由此计算项目区含水层中的纵向弥散系数 $D_L = \alpha_L \times u = 14.83 \times 0.046$ m/d=0.68(m^2 /d);

横向y方向的弥散系数DT: 根据经验一般,

$$\frac{D_T}{D_L} = 0.1$$

因此 $D_T=0.1\times D_L=0.068$ (m^2/d)。

(1) 预测结果

预测结果分别见表5.2-14。

表 5.2-14 排土场淋溶水渗入地下镍浓度预测结果(mg/l)

预测时段	超标距离(m)	镍最大浓度(mg/L)	最大浓度处距离(m)
100天	0	0.000233	20
500天	0	0.0000873	62
1000天	0	0.0000598	111

图5.2-2 100天镍浓度历时曲线图

图 5.2.-3 500 天镍浓度历时曲线图

图 5.2-4 1000 天镍浓度历时曲线图

从表5.2-2~5.2-4预测结果可以看出,废石淋溶水的预测结果超标距离为0,超标范围离开排土场距离为0。100d时,预测最大浓度值为0.000233mg/L,位于下游20m处;200d时,预测最大浓度值为0.000149mg/L,位于下游31m处;500d时,预测最大浓度值为0.0000873mg/L,位于下游62m处;1000d时,预测最大浓度值为0.0000598mg/L,位于下游111m处;3000d时,预测最大浓度值为0.0000337mg/L,位于下游305m处,污染物运移到下游污染浓度满足《地下水质量标准》(GB/T14848-2017)中的III类标准。

(6) 废石淋溶水对地下水的环境影响评价

项目区域周围 10km 范围内无集中或分散居住区,本矿区所在区域平均降水量为 250mm,年平均蒸发量为 2400mm,降水量小于蒸发量,废石处置过程中淋溶水量极少,且废石为一般固废,对环境影响较小。

环评要求在生产过程中废石按规划合理堆放,且在排土场四周修建截排水工程,排土场下游设置防渗集水池,以确保暴雨、洪水发生时,排土场雨水全部排至排土场下游防渗集水池中用于排土场洒水降尘。蓄水池敷设土工膜防渗。

综上所述,只要对固体废物做到合理处置,其对区域环境的影响不大,但从 资源利用角度看,应对废石加以综合利用,如可用于井口场地拓展、场内道路路 基修筑、维护的填料等,可减少废石堆存,减轻对环境造成的影响。

5.2.4 声环境影响预测与评价

5.2.4.1 噪声源

矿山开采期间凿岩、爆破、压气、铲装运设备等生产作业时均会产生噪声。 产生高噪声的设备主要有采矿场的凿岩机、通风机、空压机、水泵和爆破噪声等。

5.2.4.2 振动环境影响分析

矿山开采过程中,炸药在岩石中爆炸时,会产生强大的冲击波,在一定范围 内产生地震现象,这就是爆破地震效应。爆破振动一旦传播到爆破区之外,不仅 会造成浪费,还会对附近建筑物产生破坏作用,同时对周边人员产生不良的心理 影响。

爆破产生的地震效应不仅与地质条件有关,还与炸药量、爆心距、爆破方法以及炸药的爆破能力等诸多因素有关,目前环境影响评价工作中爆破振动对周围

环境的影响预测评价体系尚未完善,本项目爆破作业对周边环境影响主要根据地 质、采矿行业的相关技术资料及标准进行简单分析评价。

(1) 爆破振动安全标准

目前,判断爆破地震强度对建筑物的影响,大都采用介质质点振动速度作为 判据。我国的《爆破安全规程》中规定了各式建筑物、构筑物的安全振速判据, 见表 5.2-15。爆破地震烈度与最大振速的关系见表 5.2-16。

建(构)筑物类型	安全振动速度
土窑洞、土坯房、毛石房屋	1.0
一般砖房、非抗震的大型砌块建筑物	2~3
钢筋混凝土框架房屋	5

表 5.2-15 建(构)筑物地面质点的安全振动速度(cm/s)

烈度 爆破地震最大震速(cm/s) 振动标志 Ι < 0.2 只有仪器才能记录到 II $0.2 \sim 0.4$ 个别人静止情况下能感觉到 III $0.4 \sim 0.8$ 某些人或知道爆破的人能感觉到 多数人感到振动,玻璃作响 IV $0.8 \sim 1.5$ V 陈旧的建筑物损坏,抹灰撒落 $1.5 \sim 3.0$

表 5.2-16 爆破振动烈度

根据表 5.2-15 和表 5.2-16 中的资料,本次环评对矿山邻近建(构)筑物的 安全振速按以下原则计算:

钢筋混凝土框架房屋Y<5cm/s:

- 一般砖房、民房≤2.5cm/s。
- (2) 爆破安全距离与爆破振动速度

 $3.0 \sim 6.0$

矿山爆破过程对环境的影响除了粉尘、瞬间噪声和有害气体之外,关键是地 面震动、爆破飞石和爆破冲击波对环境的影响。

根据《爆破安全规程》,爆破地震安全距离可按下式计算:

 $R = (K/\gamma) 1/\alpha \cdot Qm$

式中:

VI

- R—爆破地震安全距离, m;
- Q—炸药量,kg,齐发爆破取总炸药量,微差爆破或秒差爆破取最大一段炸

抹灰中有细裂缝, 建筑物出现变形

药量; 本项目采矿一次使用炸药量 Q 取 40kg;

γ—地震安全速度, cm/s; 该工程地表构筑物主要为普通房屋, 为一般砖房, 取 2.5cm/s;

m—药量指数;通常取 0.5;

Κ, α—与爆破点地形、地质等条件有关的系数和衰减系数。

爆区不同岩性的 K、 α 信 见表 5.2-17。

表 5.2-17 爆区不同岩性的 $K \times \alpha$ 值

岩性	K	α
坚硬岩石	50-150	1.3-1.5
中硬岩石	150-250	1.5-1.8
软岩石	250-350	1.8-2.0

本矿山属中硬岩石地质条件,取 K=250、α=1.8;对于中硬岩石地质条件,在一次炸药使用量为 40kg 时,计算得爆破地震安全距离 R 为 45m。即距离爆点 45m 范围内的设施将不同程度地受到爆破振动影响,其振动水平将高于标准限额 2.5cm/s。根据上式可预测对于该矿不同距离处的爆破振动水平,见表 5.2-18。

表 5.2-18 不同距离处构筑物爆破振动速度预测

预测点距离 m	10	20	30	40	45	50	100	200	250	300
振动速度 cm/s	36.24	10.41	5.02	2.99	2.42	2.00	0.57	0.14	0.11	0.08

(3) 爆破振动影响评价

由表 5.2-18 预测结果可知,在生产过程中爆破情况下,在距爆源 45m 以外的设施及建筑物,其质点振动速度小于安全允许标准。本矿采矿场区域 45m 范围内无建筑物布设。办公生活区布置在南部排土场西侧约 1.5km 处,周围 500m 范围内无矿体、工业广场、排土场等设施,所以爆破作业产生的爆破地震波对办公生活区内建筑物影响较小。

5.2.4.3 噪声影响预测及分析

1、噪声源强

建设项目主要噪声源源强情况见表 5.2-19。

表 5.2-19 运营期噪声源强表

序号	噪声源	位置	噪声源强度(dB(A))	备注
1	凿岩机	采矿	108~110	间歇性

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

2	提升系统	采矿	85~100	间歇性
3	通风机	采矿	90~100	连续性
4	空压机	采矿	88~92	连续性
5	爆破噪声	采矿	100~110	间歇性
6	挖掘机及装载机	采矿	80~90	间歇性
7	液压破碎锤	采矿	85~95	间歇性
8	井下破碎机	工业场地	85~100	间歇性
9	各类水泵	工业场地	80~100	间歇性
10	砂轮机	工业场地	70~90	间歇性
11	运输车辆	运输	82~90	断续性

2、预测模式

(1) 预测模式

采用《环境影响评价技术导则一声环境》(HJ/T2.4-2021)中工业噪声预测模式。

①单个室外点声源在预测点产生的声级计算基本公式

如已知声源的倍频带声功率级,预测点位置的倍频带声压级 L_P(r)可按公式计算:

$$L_P(r) = L_w + D_C - (A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc})$$
 (1)

式中:

 L_{w} —倍频带声功率级,dB;

 D_{c} —指向性校正,dB,对辐射到自由空间的全向点声源,为 0,倍频带衰减,dB:

 A_{div} —几何发散引起的倍频带衰减,dB;

 A_{atm} 一大气吸收引起的倍频带衰减,dB;

 $A_{\rm g}$ —地面效应吸收引起的倍频带衰减,dB;

 A_{bar} 一声屏障引起的倍频带衰减,dB;

 A_{misc} —其他多方面效应引起的倍频带衰减,dB。

如已知靠近声源处某点的倍频带声压级 $L_P(r0)$ 时,相同方向预测点位置的倍频带声压级 $L_P(r)$ 可按公式(2)计算:

$$L_P(r) = L_P(r_0) + D_C - (A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc})$$
 (2)

预测点的 A 声级 LA(r),可利用 8 个倍频带的声压级公式(3)计算:

$$L_{A}(r) = 10 \lg \left\{ \sum_{i=1}^{8} 10^{0.1[L_{pi}(r) - \triangle L_{i}]} \right\}$$
 (3)

式中:

 $L_A(r)$ 一距声源 r 处的 A 声级,dB(A);

Lpi(r) —预测点(r)处,第 i 倍频带声压级,dB;

 ΔLi —第 i 倍频带的 A 计权网络修正值,dB。

在只考虑几何发散衰减时,可按公式(4)做近似计算:

$$L_A(r) = L_A(r_0) - A_{div}(4)$$

式中:

 $L_A(r)$ —距声源 r 处的 A 声级,dB(A);

 $L_A(r0)$ —参考位置 r0 处的 A 声级 dB(A)。

 A_{div} —几何发散引起的衰减,dB。

②室内声源等效室外声源声功率级计算方法

设靠近开口处(或窗户)室内,室外某倍频带的声压级分别为 L_{P1}和 L_{P2}。 若声源所在室内声场为近似扩散声场,则室外倍频声压级可按下公式近似求出:

$$L_{n2} = L_{P1} - (TL + 6)$$
 (5)

式中: TL一隔墙或窗户倍频带的隔声量, dB。

③噪声贡献值计算

设第 i 个室外声源在预测点产生的 A 声级为 L_{Ai} ,在 T 时间内该声源工作时间为 图 t_i ; 第 j 个等效室外声源在预测点产生的 A 声级为 L_{Aj} ,在 T 时间内该声源工作时间为 t_j ; 则拟建工程声源对预测点产生的贡献值为(Leqg):

$$L_{\text{eqg}} = 101g \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1 L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right) \right]$$
 (6)

式中:

 t_i —在 T 时间内 j 声源工作时间,s;

 t_i —在 T 时间内 i 声源工作时间, s_i

T—用于计算等效声级的时间, s:

N-室外声源个数:

M—等效室外声源个数。

(2) 建立坐标系统

本次环评中为了更准确、快速地进行噪声预测分析,采用了宁波环科院六五软件工作室开发的 EIAN2.0 噪声预测评价软件。预测点高度为 1.5m。预测范围为厂区边界外 200m 范围内。坐标原点为规划矿区边界西南处,原点以东方向为 X 轴正方向,原点以北方向为 Y 轴正方向。

(3) 影响声波传播的各类参量见表 5.2-20。

		· · · · · · · · · · · · · · · · · · ·
项目所在区域	参量	取值
	年平均风速(m/s)	2.6
乌恰县	年平均气温(℃)	6.7
	年平均相对湿度(%)	46
	空气大气压(atm)	786hPa

表 5.2-20 影响声波传播的各类参量表

3、采用标准

厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准(昼间≤60dB(A),夜间≤50dB(A))。

4、预测结果与评价

(1)噪声预测结果

根据实际情况,把各具体复杂的噪声源叠加简化为一个点声源进行计算,再将噪声值进行能量叠加,经计算矿区内各噪声源噪声值叠加后为86.6(A)。

根据总平面布置中确定各个高噪声源的相对位置,利用上述预测模式和确定的各高噪声设备的声级值,对厂界的噪声级进行预测,预测结果见表 5.2-21。

名称	距噪声污染源距离(m)								
距离	1	10	20	30	50	70	90		
影响值	86.6	66.5	60.5	57.0	52.5	49.6	47.4		

表 5.2-21 噪声影响预测 单位: dB(A)

由上表预测结果可以看出,矿山进入生产期间,生产活动产生的噪声在 30m 外可以达到《声环境质量标准》(GB3096-2008)2 类昼间标准限值的要求,在 70m 外可以达到《声环境质量标准》(GB3096-2008)2 类夜间标准限值的要求。本工程办公生活区距离采矿工业场地距离约 1.5km,不受通风机械及工程机械噪声影响。受运营期噪声影响的主要为工业场地作业人员,由于强噪声源均位于室

内,工人一般不近机操作,因此受影响不大。

本工程地下开采设备噪声源强度较大,但对地面环境无影响。处于井上地面室内的噪声源对周围环境影响也较小。采矿场噪声影响范围内周围无居民区敏感点,噪声影响主要是对矿区内工作人员,通过采取有效的隔声、降噪措施后,厂界噪声排放满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准的要求。对作业人员采取有效的劳动保护措施后可减轻对人员身体健康的影响。生活区声环境基本不受采矿噪声影响。

5、道路两侧噪声预测结果

矿区内车辆、平路机运行噪声及鸣笛声,另外还有原矿、剥离物装卸过程中发出的噪声为主要运输噪声源,汽车全速行驶产生的交通噪声在 73~82dB(A)之间,通常运输车辆、平路机出入采场内时速度相对缓慢,产生噪声在 63~70dB(A)之间。车辆、平路机的出入路线避开生活办公区,同时在矿区内减速行使,并尽量减少鸣笛次数。根据现场勘查,矿区道路周边无居民区,不会造成运输噪声扰民现象。

5.2.5 固体废物对环境的影响评价

5.2.5.1 运营期固体废物环境影响分析

运营期固体废物主要包括采矿废石、生活垃圾、废机油、废油桶、沉淀池底 泥等。

(1) 采矿废石

本项目运营期产生废石主要是露天开采废石和井下掘进废石,根据开发利用方案,产生量为1万t/a,矿山服务年限25年,服务期满废石产生量总计25万t。

根据矿区废石检测结果,对照《危险废物鉴别标准 浸出毒性鉴别》 (GB5085.3-2007)的鉴别标准进行分析判断废石的性质,对照《污水综合排放标准》(GB8978-1996)中最高允许排放浓度来确定固体废物类别,分析详见表5.2-22~表5.2-24。

表 5.2-22 废石浸出试验结果统计 单位: mg/L, pH 值除外

检测项目		pH、砷、	镉、总铬、	铜、铅、汞	克、镍、锌、	硒、铁	
分析项目	рН	砷	镉	总铬	铜	铅	汞
检测结果	8.64	< 0.071	< 0.0002	< 0.05	< 0.02	< 0.001	< 0.0002

分析项目	镍	锌	硒	铁	/	/	/
检测结果	0.16	0.027	0.00028	0.40	/	/	/

表 5.2-23 废石毒性鉴别标准 单位: mg/L, pH 值除外

序号	危害成分项目	浸出液中危害成分浓度限值 (mg/L)	备注
1	рН	2.0 <ph td="" 值<12.5<=""><td></td></ph>	
2	砷	5	
3	镉	1	
4	总铬	15	
5	铜	100	
6	铅	5	《危险废物鉴别标准 浸出毒性鉴
7	汞	0.1	别》(GB5085.3-2007)
8	镍	5	
9	锌	100	
10	硒	1	
11	铁		

表 5.2-24 污水综合排放最高允许排放标准 单位: mg/L, pH 值除外

序号	污染物	最高允许排放浓度
1	рН	6~9
2	总砷	0.5
3	总镉	0.1
4	总铬	1.5
5	总铜	0.5
6	总铅	1.0
7	总汞	0.05
8	总镍	1.0
9	总锌	2.0
10	总硒	0.1
11	铁	/

综合判定,本工程矿山废石为 I 类工业固体废物。排土场服务于采场,为了缩短废石的运输距离,采取就近排土的方式,此次共设计两个排土场,其中北部排土场布置于 IV 号露采场北出入沟东北侧约 400m 的山谷,堆存标高在3470.00~3600.00m 之间,容积 1865.3×10⁴m³,占地面积 55×10⁴m²,主要用于堆存 IV 号露采场部分废石及 I 露采、地采所有废石;南部排土场布置于 IV 号矿带

露采场南出入沟南侧约 900m 的山谷处,堆存标高在 3310.00~3480.00m 之间,容积 9693.7×104m³,占地面积 120×10^4 m²,主要用于堆存 IV 号露采场部分废石及 IV 地采废石。排土场总容积约 11559×10^4 m³,总占地面积约 175×10^4 m²。

本工程开采产生废石均临时堆放在排土场内,后期部分用于采空区治理和回填,综合利用。采取上述措施后对项目周围环境影响较小。

(2) 生活垃圾

本项目劳动定员 352 人,按人均生活垃圾(代码:900-999-99)产生量 1kg/d 计算,生活垃圾产生量约为 52.8t/a。生活垃圾集中收集、集中处置,定期运至乌恰县生活垃圾填埋场填埋处理。采取上述措施后对项目周围环境影响较小。

(3) 危险废物

本工程产生的危险废物为废机油、废油桶,来源于工程机械和大型设备运营机修过程,废机油、废油桶的危废类别为 HW08-900-214-08,预计产生危险废物约 8t/a,统一收集至矿区防渗危废暂存间,定期交由有危险废物处置资质的单位处置。采取上述措施后对项目周围环境影响较小。

矿区设置一处20m²的危废暂存间,危废暂存间将按照《危险废物贮存污染控制标准》(GB18597-2001,环保部公告2013年第36号修改)进行建设,地面与裙角采用坚固防渗的材料建造,安装防盗门窗,基础防渗材料渗透系数小于1×10⁻¹⁰cm/s,同时设置危险废物识别标示,并定期对危险废物贮存设施进行检查。本项目危险废物产生情况详见下表:

名称	危险废物 类别	危险废物代码	产生量	产生工序 及装置	形态	主要成分	危险特性
废机 油	HW08 废矿 物油与含矿 物油废物	900-214-08	8t/a	车辆和机 械设备维修	液态	碳氢化合 物重金属	毒性和易燃性

表 5.2-25 危险废物产生情况

(4) 沉淀池底泥

本项目矿坑(井)涌水采用沉淀池进行处理,沉淀池底泥(代码: 081-999-61) 产生量约298t/a。沉淀池底泥主要污染物为SS,属于I类一般固废,送矿区废石 堆场暂存,后期用于矿山土地复垦。

5.2.5.2 闭矿期固体废物环境影响分析

- (1)设备分拆下来后,会产生一定量的废弃物,这些废弃物主要为各设备的零部件,油纱布、破损的设备碎块及一些小设备,故建议工作人员在工作过程中,注意被遗弃的设备零部件,破损的设备碎块、小设备的收集,使得资源能够得到充分的利用。
- (2)构筑物在拆除的过程中,会产生一定量的砖、石、渣土等建筑垃圾, 拆除的建筑垃圾均运至当地建筑垃圾填埋场处理。

5.2.6 土壤环境影响分析

5.2.6.1 土壤环境的影响识别

(1) 建设项目所属行业识别

本工程为金矿采选,根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018) 附录 A,为 I 类项目。

(2) 土壤环境影响类型、影响途径、影响源与影响因子识别

通过对项目工程分析,根据《环境影响评价技术导则土壤环境(试行)》(HJ 964-2018) 附录 B表 B.1,主要为生态影响型项目,兼有污染影响。

根据工程组成,可分为建设期、运营期两个阶段对土壤的环境影响。

①污染影响型

施工期环境影响识别主要针对施工过程中施工机械在使用过程中,施工人员在施工生活过程中,固体废物在临时储存过程中对土壤产生的影响等。

运营期环境影响识别主要针对排放的废气、废水、废石等,本工程主要包括 工业场地及新建排土场等生产运营过程中对土壤产生的影响。

②生态影响型

本工程采矿过程中不使用酸碱试剂,不会导致土壤酸化、碱化,但采掘和掘 进过程中,地下水水位的变化会导致土壤盐化。

本工程对土壤的影响类型和途径及影响因子见表 5.2-26 至 5.2-28。

表 5.2-26 土壤环境影响类型与影响途径表

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

	建设期	$\sqrt{}$		V				
运	采矿区	$\sqrt{}$				$\sqrt{}$		
营期	排土场	V	V	V				
注: 在可能产生的土壤环境影响类型处打"√"								

表 5.2-27 污染影响型建设项目土壤影响源及影响因子识别表

污染源	工艺流程/节点	污染途径	全部污染物指标	特征因子
排土场	废石堆存过程中 淋溶液	大气沉降、地表漫流、 垂直入渗	砷、镉、铬(六价)、铜、 铅、汞、镍、锌、pH	镍

表 5.2-28 生态影响型建设项目土壤环境影响途径识别表

影响结果	影响途径	具体指标	土壤环境敏感目标
其他	水位变化	土壤盐化	/

5.2.6.2 预测评价范围、时段和预测情景设置

项目的预测评价范围与调查评价范围一致,生态影响型评价时段为运营期和服务期满后;污染影响型评价时段为运营期。按项目正常运营和事故状态两种情形为预测情景。

5.2.6.3 预测评价因子

采矿区预测评价因子: 镍、全盐量、pH。

本工程排土场土壤污染以垂直入渗为主,预测评价因子选取本工程特征因子: 镍。

5.2.6.4 预测评价方法及结果分析

1、土壤盐化预测

金矿开采后,地表沉陷将引起地下水水位抬升,可能造成矿内区域盐化进一步发育,本次评价采用《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)中附录 F"土壤盐化综合评价预测方法"进行预测评价。

(1) 土壤盐化综合评分法

根据表 5.2-29 选取各项影响因素的分值与权重,采用下列公式计算土壤盐化综合评分值(Sa)。

$$S_a = \sum_{i=1}^n W x_i \times \mathbf{I} x_i$$

式中: n——影响因素指标数目;

Ixi——影响因素 i 指标评分;

Wxi——影响因素 i 指标权重。

表 5.2-29 土壤盐化影响因素赋值表

以 岭田丰						
影响因素	0分	2 分	4分	6分	权重	
地下水位埋深(GWD)/m	GWD≥2.5	1.5≤GWD<2.5	1.0≤GWD<1.5	GWD<1.0	0.35	
干燥度(EPR)	EPR<1.2	1.2≤EPR < 2.5	2.5≤EPR<6	EPR≥6	0.25	
土壤本底含盐量(SSC)/(g/kg)	SSC<1	1≤SSC<2	2≤SSC<4	SSC≥4	0.15	
地下水溶解性总固体(TDS)/ (g/L)	TDS<1	1≤TDS<2	2≤TDS<5	TDS≥5	0.15	
土壤质地	黏土	砂土	壤土	砂壤、粉土、砂粉土	0.10	

表 5.2-30 土壤盐化预测表

土壤盐化综合评分值(Sa)	Sa<1	1≤Sa<2	2≤Sa<3	3≤Sa<4.5	Sa≥4.5
土壤盐化综合评分预测结果	未盐化	轻度盐化	中度盐化	重度盐化	极重度盐化

(2) 土壤盐化预测结果分析

根据前文水文地质章节描述,采矿区地下水位埋深为 1.5~25.5m,分值为 2; 干燥度(蒸降比值)(EPR)大于 6,分值为 6;土壤本底含盐量(g/kg)最大值 1.8,分值为 2;参考该地区地下水环境资料,地下水总溶解固体 TDS<1,分值为 0;土壤质地为壤土,分值为 4。综上,计算土壤盐化综合评分值(Sa)为 2.9,土壤盐化综合评分预测结果为中度盐化。这主要是由于区域干燥度较大引起。因此,本项目的建设不会增加区域土壤盐化程度。

2、土壤酸碱化预测

根据现状监测结果,本工程评价区内土壤监测点位 pH 监测值为 8.92,在 8.5≤pH<9.0 范围之间,属轻度碱化。本工程运行期不向土壤环境排放酸碱废水,因此本工程运行期做好废污水处理情况下,不会对土壤酸碱程度产生影响。

3、污染影响分析

(1) 地面漫流土壤污染环境影响分析

TEL: 0991-3333881

192

本工程地表漫流对土壤的影响主要为排土场淋溶水地表漫流。

根据土壤环境质量现状监测结果,矿区范围内土壤镍含量本底值在11.0~62.0mg/kg,矿石中的镍含量低于区域本底值,因此废石地表漫流不会对土壤造成镍污染。

(2) 垂直入渗土壤污染环境影响分析

大气污染物的沉降将会改变项目区周边土壤表层理化性质,在雨水下渗过程中,将会使表层污染物下渗至深层土壤,进而造成局部区域土壤环境的污染。废石在堆存过程中,在降雨天气将会产生淋溶水,下渗或集水池池体破裂,均有可能污染土壤层。

本工程废石堆存过程中,在正常气象条件下是不产生废水的,只有在降雨天气产生淋溶废水。为降低淋溶废水对区域土壤环境的污染影响,本工程在各堆场汇水侧建设截排水沟、下游建设挡渣墙和淋溶水集水池,收集淋溶水用于堆场洒水降尘,对土壤环境影响较小。

(3) 大气沉降

本项目大气污染物主要为采矿粉尘、各类堆场扬尘、运输扬尘等,对排土场、运输道路、装卸过程进行洒水降尘,以此降低污染物沉降对矿区及周边土壤环境的污染影响,粉尘沉降量较小,对土壤环境质量影响较小。

本工程各功能区均采取"源头控制"、"分区防控"的防渗措施,可以有效保证 污染物不会进入土壤环境,防止污染土壤。危险废物暂存间已按《危险废物贮存 污染控制标准》(GB18597-2001)要求进行设计建造,储罐区按照安全设计要 求建设。危险废物分类收集后,定期交由有危险废物处置资质的单位进行处置。 整个过程基本上可以杜绝危险废物接触土壤,且建设项目场地地面会做硬化处理, 对土壤环境不会造成较大影响。

运营期产生的废水、固体废物和危险废物等污染物均有妥善的处理、处置措施严格执行各项环保措施,则各种污染物对土壤环境的影响均处于可接受范围内。

 工作内容
 完成情况
 备注

 影
 影响类型
 污染影响型();生态影响型();两种兼有(√)
 /

 响
 土地利用类型
 建设用地(√);农用地();未利用地(√)
 土地利用

表 5.2-31 土壤环境影响评价自查表

识	工作内容	完成情况				备注	
, ,						类型图	
别	占地规模		(3.6	8) km ²		/	
	敏感目标信息	敏感目	标(草地)、方	位(周边)、距离	<u>u</u> (/)	/	
	影响途径	大气沉降(√); 地面漫流(√); 垂直入渗(√); 地下水			1		
	彩啊述狂		位√; ‡	其他 ()		/	
	全部污染物	镉、汞	、砷、铅、铬、	铜、镍、锌、pH	SSC	/	
	特征因子		pH、S	SC、镍		/	
J	所属土壤环境影	1 迷	√. II 迷 () .	Ⅲ类(); IV类	()	/	
	响评价项目类别	1 %					
	敏感程度	敏原	感(); 较敏感	(√);不敏感()	/	
节	平价工作等级	-	一级 (); 二级	(√); 三级()		/	
						气象资料	
	资料收集		a) ⊓: b) ⊓:	c) 🗆; d) 🗆		土地利用历史情况	
现	241110214	u, e, e, e, e, e,					
状			其他资料				
	理化特性					同附录C	
查			占地范围内	占地范围外	深度		
内	现状监测点位	表层样点数	4	6	0~0.2m	点位布置	
容						0~0.5m,	图
		柱状样点数	3	0	0.5~1.5m, 1.5~3.0m		
			,				
	现状监测因子		•	:、基本 45 项		/	
	评价因子			:、基本 45 项	+	/	
现	评价标准			長 D.1√; 表 D.2□;		/	
状				结果均能达到《= ****:(*******************************			
评				F准(试行)》(GE		,	
价				!范围外土壤各监》 地土壤污染风险		/	
		· // · · ·					
	 预测因子	行)》(GB15618-2018)农用地土壤污染风险筛选值。				/	
影	预测方法	全盐量			/		
^彩					/		
预	预测分析内容			(可接受)		/	
´,´,				\square ; b) \square ; c) \square			
	预测结论			a) [; b) [/	
防	防控措施	土壤环境质量				/	

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

	工作内容	完成	备注		
治		()			
措	미디 마스 네는 25대	监测点数	监测指标	监测频次	
施	跟踪监测 施	1	pH、SSC 等	5 年/次	/
	信息公开指标				
	评价结论整体土壤环境影响尚在可控制范围内				/

5.2.7 生态环境影响分析

本工程的建设影响自然景观格局,使区域内自然景观破碎化,向人文景观转变。项目建设对区域内生态体系的稳定性影响主要途径是地表扰动和植被破坏,同时对水土保持功能产生一定影响。

矿山新建后,造成的生态环境破坏和生态影响,有以下几个方面:

- (1) 地表错动影响,矿区的开采破坏了开采区岩层的原始基础和应力平衡,会导致上覆岩层和地表产生移动变形,破坏土壤结构和植被资源,局部生态环境受到破坏;
- (2) 地下开采扬尘对使区域内及周边地表植被生长、地表水环境受到一定 影响:
- (3)工作人员扰动和设备噪声、灯光等也会对区域野生动物的栖息、觅食及繁殖等产生一定影响;
- (4)新增工业场地、废石堆场等工程占地对区域土地利用结构、景观地貌 产生影响。
- (5) 开采过程中产生矿井涌水,打破了地下水资源循环的平衡状态,造成 地表水向地下渗透,导致地表水资源量的减少,从而影响矿山开采段巴拉额尔齐 斯河河流水生生态及河道两侧、下游陆生生态环境。

5.2.7.1 土地利用变化影响

项目区土地利用类型为低覆盖度草地,本次环评采矿区主要为露天+地下开采,新建巷道及平硐,因此本工程建成后土地利用类型部分由低覆盖度草地转变为工矿用地,土地利用类型及结构将发生变化。

5.2.7.2 对地形地貌影响分析

本工程为新建项目,矿区开采设置露天采场,同时本工程需新建废石堆场。 废石堆场布置在矿区北侧和南侧,排土场总容积约 11559×10⁴m³,总占地面积约 175×10⁴m²。在采取边开采边恢复、闭矿期对扰动区域的生态恢复工作后,最终 对区域地形地貌的影响较小。

5.2.7.3 对植被影响分析

(1) 对生物量的影响分析

本工程新建地面工程,主要包括工业场地、排土场及井下开采所需的辅助车 间等地面建筑。

项目区地表天然植被以大气降水为水源,因此在影响植被资源的各项因素中, 地表剥离与排土场覆压对植被的影响最大,其次为地面设施建设。排土场及工业 场地等工程设施建设将不可避免的造成植物资源损失。项目建设对评价区内的植物资源有一定影响,但不改变植物群落组成。

根据调查,矿区高覆盖度草地的草层高度 15cm-25cm,覆盖率 5%-25%,平均每公顷鲜草产量约 500kg。经调查,本工程工业场地为裸岩石砾地,植被覆盖度较低,约为 5%。

(2) 粉尘对植物生长影响分析

本工程车辆运输过程中及生产过程产生的粉尘等污染物会对项目区周围空气环境产生影响。污染物可通过自然沉降和降水淋溶等途径进入土壤环境,从物理、化学等方面影响周围土壤的孔隙度、团粒结构、酸碱度、土壤肥力及微量元素含量等,从而间接影响植被生长。粉尘降落到植物叶面上,将堵塞叶面气孔,使光合作用强度下降。同时,覆尘叶片吸收红外光辐射的能力增强,导致叶温增高,蒸腾速度加快,引起失水,使植物生长发育不良。本工程在生产过程中采取防尘措施,将尽可能降低扩散到附近植被的粉尘量。

(3) 对植被演替的影响

项目实施后,原有的地表植被被破坏,在土地复垦及矿区绿化过程中,种植适宜环境的植被类型,主要以播撒杂草种子为主。由于当地自然条件较好,草本植物生长较快,地表人工植被将在短期内与原生植被一样。植被演替是较为漫长的过程,因此,本项目的实施对植被演替的影响几乎可以忽略不计。

本项目需合理利用水资源,高效保护植被,建设可持续发展绿色矿山,同时运营期应加强矿区绿化,种植适宜环境的植被类型。

5.2.7.4 对野生动物影响分析

经调查,由于项目区域人为活动较多,野生动物的生存条件受人类影响较大, 所以主要栖息分布着一些伴人型山地草原类耐旱型野生动物,如常见有乌鸦、麻 雀、石雀、等鸟类,哺乳类动物常见有长尾黄鼠等,野生动物分布密度和种群数 量较小。

项目厂界围栏对外环境野生动物进行了隔离,避免了外界野生动物进入而造成影响。且项目区各种机械生产的噪声和人员活动对外环境动物造成干扰,大型野生动物很少出现,仅有少量小型爬行类动物出没。

本工程为扩建项目,同时新增地面建筑。在项目的建设过程中,会破坏鼠类的洞穴和导致部分洞穴中的鼠类死亡,对飞翔的鸟类,项目建设有驱赶作用,但影响不大。对爬行动物及昆虫,其影响与对鼠类的影响近似,由于该区域野生动物密度较低,总体上影响较小。

5.2.7.5 对自然景观影响分析

矿区在一定程度上已经破坏了范围内原有的景观格局,使区域内自然景观类型变为容纳工业厂房、排土场、道路等人工景观,从而对原来的景观进行分隔,造成空间上的非连续性和一些人为的劣质景观,与周围自然环境不协调。

本次项目为新建工程,本次新增工业场地排土场,在项目建设期,项目建设带来的人工生态系统优势度增加、草甸生态系统及落地生态系统优势度的减少针对矿区自然景观将会产生较大影响。根据生态环境现状调查可知,本项目位于高山区,由于各主要工程建设场地是依照所处位置的地形地貌及项目要求进行了较为合理的布局,因此,本次项目建设将原有的裸地景观、草甸景观改变为工矿用地景观,对于周边相邻的草甸景观及裸地景观等的景观格局和功能不会带来明显改变。本次环评要求服务期满后,对采矿区进行生态恢复,在工业场地均拆除及进行了生态恢复的前提下,自然景观影响将得到一定程度的恢复和改善。

5.2.7.6 水土流失影响分析

本工程建设过程中,由于施工人员践踏、机械作业等,将对地表植被及土壤 结构造成破坏,形成一定面积的裸地,遇到雨天气将会造成水土流失,开挖的土 石方将占用一定的土地,对占地范围产生扰动、植被破坏,开挖土石方堆存易发生水土流失。工程建设新增水土流失产生于以下方面:

①本工程实施期间,由于场地开拓及平整地基土层的填挖、施工人员临时生活区、施工道路的布置等,均有可能造成原生地表植被的破坏,引发和加剧水土流失。

②弃渣堆放被风蚀的可能性较大,若堆放或保护措施不当,将会在大风作用下产生水土流失。

从本工程建设性质来看,项目及其配套设施建设将扰动原地貌,改变地形地貌,破坏植被,工程建设对拟建项目占地范围内的土地产生扰动,项目占地面积较小,影响范围也有限,在采取相应的水土保持措施后对项目区周边水土流失的影响不大。

5.2.7.7 对区域土壤影响分析

矿山建设项目在其建设过程中将不可避免地会占用和破坏一定面积的土地。 这些活动将直接破坏地表土层和植被,造成对土壤的破坏,从而造成对原有生态 系统的破坏,引起水土流失。

本工程占地类型为低覆盖度草地,土壤类型为栗钙土。施工期将使占地范围内的植被全部遭到破坏,土地利用类型改变,同时施工其场地开拓及平整工作将对土壤结构产生影响。原生植被在遭到破坏后的第一个生长期内将全部消失,一次性减少了植被的面积,导致蓄水保土功能降低或丧失。施工期结束后,可对施工区域开展生态环境恢复、治理,可以减少对矿区及周边的植被及土壤影响。

5.2.8 闭矿期影响分析

按照"边开采,边治理"的方针,严格落实矿山生态环境治理恢复方案,要做到预防为主,针对存在的问题,制定出预防措施,对生产中出现的问题要及时采取相应的措施予以解决,达到防灾、减灾的目的。

5.2.8.1 资金筹集

闭矿后的资金问题是该期环境影响的关键,其资金因来源于开发利用该区域 的生产企业,因此,企业对闭矿后的环境保护承担完全义务,在项目运营阶段, 应对闭矿后的环保资金预提,留足环保治理费用,具体额度应委托相关部门作详 细预算。预留资金应设立专用账户,由相关部门监督使用。

5.2.8.2 闭矿后影响

本工程建设及运行过程中,采矿场、排土场、工业场地等占用大量的土地,被占土地上的地表植被不可避免受到破坏,对地貌也形成一定的破坏。此外,采矿后大量废石堆放占地,使所占土地改变了使用功能,大量废石堆放形成废石山,使占地范围的天然植物失去了生存空间,野生动物受人为活动的影响,种群变得十分单一,地下采空区塌陷形成采坑或地形海拔高度发生改变,闭矿后如不及时用废石回填塌陷坑,可能造成人和动物的意外坠落。因此,项目服务期结束后(闭矿后)应将地表建筑物拆除,在塌陷趋于稳定后进行回填处理,在塌陷坑设置防护围栏和悬挂多种文字的警示牌。

项目服务期结束(闭矿)后,根据要求采取相应的措施,可有效减少对项目区的影响。

5.2.8.3 闭矿后恢复方案

为使生产过程造成的生态破坏降到最低,使生产和环境协调发展,根据《中华人民共和国环境保护法》的规定要求,必须委托专业单位设计水土保持和土地复垦方案,使开采活动对生态环境的不利影响降低到最小程度。结合项目区的自然条件、自然资源、社会经济状况和区域经济的开发、建设、发展对环境保护综合治理的要求,按照因地制宜、因害设防、科学治理、保护开发并举,遏制废石排放导致的生态环境的恶化,减少各种自然灾害的发生。

项目区生态恢复主要指林、牧、农业、土地整理的生态建设。在综合考虑区域地理位置、气候条件以及周边整体自然概貌等情况,须充分考虑临时占地和永久占地的地表恢复。

根据本工程建设对场地的破坏方式及破坏程度,并结合周边水文气象条件、 土壤条件、水文工程地质条件、地形地质、社会经济等条件,确定本工程服务期 结束后恢复方向为尽量恢复原有地貌景观或与周边地貌景观相协调,恢复土地的 生态使用功能。

土地复垦工作进度安排:根据项目建设及运行工艺、矿区服务年限、开采顺序及进度和土地破坏程度等,应委托相关部门编制矿山水土保持方案,其中应制定出土地复垦工程进度,以保证尽快及时复垦被破坏的土地。

采矿前无待复垦土地;采矿过程中各设施场地均要利用、无可复垦土地;所有复垦工程均在终止采矿时进行。

评价根据矿区特征和土地利用规划,提出土地整治原则如下:

- ①土地复垦与矿山开采计划相结合,合理安排,实施边开采、边复垦、边利用。
- ②土地复垦与当地农业规划相结合,与气象、土壤条件相适应,与当地的城镇、道路等建设及生态环境保护统一规划,进行地区综合治理,与土地利用总体规划相协调,以便做到地区建设布局的合理性和有利生产、生活,美好环境、促进生态的良性循环。

5.2.8.4 闭矿期生态保护措施

项目服务期结束即闭矿后的主要影响为采空区、排土场,其中采空区区域地形地貌发生较大变化,同时也存在地面塌陷隐患。为减缓矿区闭矿后的影响,提出如下措施:

- (1)利用人工、机械对采矿区塌陷破坏的土地进行回填、平整、保证其相对稳定性。采用基建及采矿过程形成的废石,基本恢复原有地形地貌或与周边地貌相协调。
- (2)利用人工、机械对项目区压占破坏的土地采用平整场地的方法复垦, 在土地复垦区,首先拆除无后期需要的地面建、构筑物,然后再进行场地平整, 基本恢复原有地形地貌,与周边环境相协调,恢复土地使用功能。
 - (3) 对采矿区井口进行封堵,并悬挂多种文字的标识牌。
- (4) 按要求对排土场进行分层、压实,加固排土场稳定性,覆土、播撒草 籽绿化,对危险的边坡进行堆砌加固,防止滑塌伤人、畜或野生动物。

采取以上措施后,矿区生态环境将逐步得到改善和恢复。

5.3 环境风险分析

环境风险是指突发性事故对环境造成的危害程度及可能性。其特点是危害大、影响范围广、发生概率具有很大的不确定性。环境风险评价的目的是分析和预测项目存在的潜在危险、有害因素,项目建设和运行期间可能发生的突发性事件或事故(一般不包括人为破坏及自然灾害),引起有毒有害和易燃易爆等物质泄漏,

所造成的人身安全、环境影响及其损害程度,提出合理可行的防范、应急与减缓 措施,以使建设项目事故率、损失和环境影响达到可接受水平。

本次按照《关于进一步加强环境影响评价管理防范环境风险的通知》(环发〔2012〕77号〕,以《建设项目环境风险评价技术导则》(HJ169-2018)为指导,以突发性事故导致的危险物质环境急性损害防控为目标,对建设项目的环境风险进行分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应急建议要求,为建设项目环境风险防控提供科学依据,达到降低危险、减少危害的目的。

5.3.1 环境风险评价程序

本工程环境风险评价程序详见图 5.3-1。

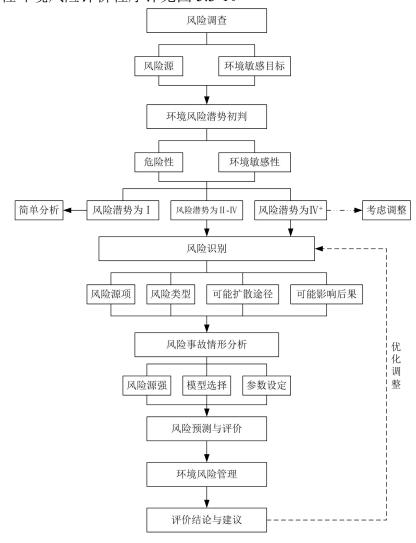


图 5.3-1 环境风险评价工作程序图

5.3.2 风险调查

危废暂存间

5.3.2.1 风险源调查

建设项目风险源调查建设项目危险物质数量和分布情况以及工艺特点。

(1) 物质危险性调查

废机油

物质风险源指存在物质意外释放,并可能产生环境危害的源。本工程运行过程中涉及的危险物质为炸药(硝酸铵)、柴油及废机油。

设施 物质名称 临界量/t 储存量/t Q 柴油罐、橇装 柴油 2500 425 0.17 式加油装置 爆破器材库 炸药 (硝酸铵) 50 0.7 35

表 5.3-1 本项目危险物质数量与临界量的比值

生产运行过程使用炸药(硝酸铵)、柴油及废机油,其理化性质及基本特征情况见表 5.3-2~5.3-4。

2500

8

0.0032

	X 3.5-2	不怕的生化工灰		<u>~</u>		
品名	柴	油	别名	油渣		
	闪电	38℃	沸点	170-390℃		
四儿业庄	相对密度(水=1)	0.82-0.846	CAS 号	68334-30-5		
理化性质	外观性状: 有色透	透明液体。				
	溶解性: 难溶于办	、易溶于醇和其他	2.有机溶剂。			
	稳定性: 化学性质	〔 很稳定。				
	危险性:柴油属于易燃物,其蒸气在60℃时遇明火会燃烧,燃烧放出大					
	量热;柴油是电的不良导体,在运输、灌装过程中,油分子之间、柴油					
独宫州和名 欧州	与其他物质之间的摩擦会产生静电,产生电火花。					
□ 稳定性和危险性 ■	燃烧产物:内燃机燃烧柴油所产生的废气含有氮氧化物、一氧化碳、二					
	氧化碳、醛类和不完全燃烧时的大量黑烟。黑烟中有未经燃烧的油雾、					
	碳粒,一些高沸点的杂环和芳烃物质,并有些致癌物如 3.4-苯并芘,可造					
	成污染。					
	侵入途径:皮肤吸收、呼吸道吸入。					
毒理学资料	健康: 柴油有麻醉和刺激作用,柴油的雾滴吸入后可致吸入性肺炎,皮					
	肤接触柴油可致接	接触性皮炎, 可引起	己眼、鼻刺激症状、	头晕和头痛。		

表 5.3-2 柴油的理化性质和危险特性一览表

品名	此木	油	别名	油渣	
	呼吸系统防护	急事态抢救时应佩 柴油接触;维修柴	了建议佩戴自吸过》 【戴空气呼吸器,说 是油机场所应保持说 《少柴油蒸气吸入。	避免口腔和皮肤与	
安全防护措施	眼睛防护	戴化学安全防护眼	 !镜。		
	身体防护	穿工作服(防腐材	材制作)		
	手防护	戴橡胶耐油手套。			
	其他	工作后,淋浴更衣	天, 保持良好的卫生	三习惯	
应急措施	急救措施	皮肤接触:立即脱掉污染的衣服,用肥皂和清水冲皮肤,出现皮炎要就医; 眼睛接触:立即翻开上下眼睑,用流动水或生理盐冲洗,然后就医; 吸入:迅速撤离现场至空气清新处,保持呼吸通畅如呼吸困难,给输氧,如呼吸停止,立即进行人工吸,就医; 食入:误食柴油者,可饮牛奶,尽快彻底洗胃,要			
	泄露措施	医院就医 首先切断泄露油罐附近的所有电源,熄灭油附近的 有明火,隔离泄露污染区,严禁携带火种靠近漏油 在回收油品时,严禁使用铁制工具,以免发生撞击 擦起火;待油迹清除后,确认无火灾隐患,方可开 继续进行;漏油处必须进行维修,确认无漏油方可 始继续使用			
	消防方法	雾状水、泡沫、干	一粉、二氧化碳、矿	少土	

表 5.3-3 硝酸铵的理化性质及危险特性一览表

品名	硝酸铵	别名	硝铵		英文名	Ammonium nitrate		
	分子式	分子式 NH ₄ NO ₃ 分子量 80.05		熔点	169.6℃			
7811. 以. 正	沸点	210℃	相对密度	1.72 (水)	蒸气压	-		
理化性质	外观气味	[气味			顶粒,有潮 <u>角</u>	解性。		
	溶解性	溶于水、乙醇、丙酮、氨水,不溶于乙醚						
稳定性	稳定,不聚	合;禁忌强运	E 原剂、强酸	设、易燃或可燃物、	活性金属粉	}末;燃烧产物:		
危险性	氮氧	氮氧化物; 该物质对环境可能有危害, 在地下水中有蓄积作用。						
毒理学		LD ₅₀ : 4820mg/kg(小鼠经口)						

表 5.3-4 废机油的理化性质及危险特性一览表

		中文名:				
标识	英文名: paraffin					
	央义名: paramn 危险性类别: 可燃液体					
		密度: 0.85	g/mL at 20℃			
理化性质	溶解性:不溶于水、甘油、冷乙醇。溶于热乙醇、二硫化碳、乙醚、酯、氯1					
		苯、石油醚。除蓖麻油外	与许多油脂和蜡都能混合			
		燃烧性:本品	可燃,具窒息			
	引燃	^找 温度(℃): 300	闪点(℃): 220			
	爆	炸下限 (%):-	爆炸上限(%):-			
	最小	、点火能(mj): -	最大爆炸压力(MPa): -			
燃烧爆炸	危险特性		遇明火、高热			
危险性	禁配物		/			
		消防人员须佩戴防毒面具	、穿全身消防服,在上风险灭活。尽可			
	MARY ITT VE	能将容器从火场移至空旷	处。喷水保持火场容器冷却,直至灭活			
	消防措施	结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,				
		须马上撤离。灭火剂:雾	伏水、泡沫、干粉、 二氧化碳、砂土。			
	健康危害	侵入途径: 吸入、食入;	急性吸入,可出现乏力、头晕、头痛、			
		恶心,严重者可引起油脂性肺炎。慢接触者,暴露部位可发生油				
		性痤疮和接触性皮炎。可引起神经衰弱综合症,呼吸道和眼刺激				
		症状及慢性油脂性肺炎。有资料报告,接触石油润滑油类的工人,				
		有致癌的病例报告。				
			密闭操作,注意通风;			
			度超标时,建议佩戴自吸过滤式防毒面 除			
	防护		枪救或撤离时,应该佩戴空气呼吸器。 戴化学安全防护眼镜。			
毒性	B1 1)	,	穿防毒物渗透工作服;			
			: 戴橡胶耐油手套;			
			· · · · · · · · · · · · · · · · · · ·			
		皮肤接触: 立即脱去	被污染的衣着,用大量清水冲洗;			
		眼镜接触:立即提起眼睑	用大量流动清水或生理盐水冲洗,就			
	<i>A</i> # # #		医;			
	急救措施	吸入:迅速脱离现场至空	气新鲜处,保持呼吸道通畅,如呼吸困			
		难,给输氧;如呼吸	停止,立即进行人工呼吸,就医;			
			是量温水,催吐,就医。			
 贮运条件			热源。应与氧化剂分开存放,切记混储。			
	配备相应品种和数量的消防器材。出去应备有泄漏应急处理设备和合适					

	材料。运输前应先检查包装容器是否完整、密封,运输过程中要确保容器不泄
	漏、不倒塌、不坠落、不损坏。严禁与氧化剂、食用化学品等混装混运。运输
	车船必须彻底清洗、消毒,否则不得装运其他物品。船运时,配装位置应远离
	卧室、厨房,并与电源、火源等部位隔离。公路运输时要按规定路线行驶。
	迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。
	建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。防治
泄漏应急	流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其他不燃材料吸附或
上 处理	吸收。大量泄漏:构筑位堤或挖坑收容。用泵转移至槽车或专用收集器内,回
	收或运至废物处理场所处置。

(2) 工艺系统危险性调查

本工程为采矿工程,生产系统涉及地下、地上两部分,其中地下开采过程中 不安全因素较多。各种风险事故多发生于井下,事故严重则会波及到地面,金矿 采掘过程中潜在的风险主要有采掘工作面冒顶、矿井透水事故: 地面环境风险事 故主要为柴油/废机油泄漏对地下水环境的影响,以及柴油/废机油、炸药发生火 灾、爆炸产生的伴生、次生污染物对大气环境的影响等。

5.3.2.2 环境敏感目标调查

本工程位于乌恰县 305°方向直距 110km, 行政区隶属新疆克孜勒苏柯尔克 孜自治州乌恰县乌鲁克恰提乡。以项目区为中心 5km 范围内无常住人群居住, 无文教环境敏感区、国家和地方级文物古迹、珍稀濒危动植物保护物种等,矿区 附近无其他国家及省级确定的风景名胜区、历史遗迹等保护区。本工程主要环境 敏感目标为流经 \mathbb{N} 号矿体中部的萨瓦亚尔顿河,及邻近矿区 500m 外的天山南脉 水源涵养生态保护红线。

5.3.3 环境风险潜势初判

TEL: 0991-3333881

5.3.3.1 环境风险潜势划分

建设项目环境风险潜势划分为 I、II、III、IV/IV+级。

根据建设项目所涉及的物质和工艺系统的危险性及其所在地的环境敏感程 度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析, 环境风险潜势划分详见表 5.3-5。

建设项目环境风险潜势划分一览表 表 5.3-5

环境敏感程度(E)	危险物质及工艺系统危险性(P)				
	极高危害(P1)	高度危害 (P2)	中度危害 (P3)	轻度危害 (P4)	

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

环境高度敏感区(E1)	IV^+	IV	III	III		
环境中度敏感区(E2)	IV	III	III	II		
环境低度敏感区(E3)	III	III	II	I		
注: IV+为极高环境风险						

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 确定危险物质的临界量。按照附录 C 定量分析危险物质数量与临界量的比值(Q)和所属行业及生产工艺特点(M)对危险物质及工艺系统危险性(P)等级进行判断。

危险物质数量与临界量比值(O)

计算所涉及的每种危险物质在厂界内最大存在量与附录 B 中临界量的比值 Q 具体计算方法如下:

当涉及一种危险物质时, 计算该物质的总量与其临界量比值, 即为 Q; 当存在多种危险物质时,则按如下式计算物质总量与其临界量比值 Q:

$$Q = \frac{q_1}{Q_1} + \frac{q^2}{Q^2} + \cdots + \frac{q_n}{Q^n}$$

式中: q_1 、 q_2 ···, q_n 为每种危险化学品实际存在量,t。

 Q_1 、 Q_2 …, Q_n 为与各危险化学品相对应的临界量, t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1)1≤Q<10; (2)10≤Q<100; (3)Q≥100。

针对企业的生产原料、燃料、辅助生产物料等,对照《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 环境风险物质,该项目危险物质数量与临界量比值情况具体见表 5.3-6。

表 5.3-6 风险物质数量与临界量比值情况一览表

设施	物质名称	临界量/t	储存量/t	Q	
柴油罐、橇装	柴油	2500	425	0.17	
式加油装置	ЛСТЫ	2500	123	0.17	
爆破器材库	炸药	50	35	0.7	
危废暂存间	废机油	2500	8	0.0032	

项目危险物质数量与临界量比值 Q 值为 0.8732 < 1,当 Q< 1 时,该项目环境风险潜势直接判定为 I 。

5.3.3.2 环境风险评价等级的确定

环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质

及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照表 1 确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为 II,可开展简单分析。

表 5.3-7 风险评价等级划分表

环境风险潜势	IV	Ш	II	I
环境评价等级	_	=	三	简单分析 a
a是相对于详解评	价工作内容而言,	在描述危险物质、	环境影线途径、环境	竟危害后果、风险

根据判断,本工程的风险潜势为 I 级。由表 5.3-7 可知,环境风险评价等级为简单分析,本次风险评价按照附录 A 要求进行环境风险识别、环境风险分析、环境风险防范措施及应急要求。

5.3.4 环境风险识别

防范措施等方面给出定性的说明

风险识别范围包括生产设施风险识别和生产过程中所涉及的物质风险识别。 本工程为采矿类项目,生产过程涉及的危险化学品物质为柴油、废机油和炸药(硝酸铵)。根据项目特点,本次生产设施识别范围为主要采矿区、工业场地、公用工程系统、环保设施及辅助生产设施。

5.3.4.1 工程环境风险识别

工程主要环境风险见表 5.3-8。

表 5.3-8 工程主要环境风险

	7 20 0 工作工文/ 50 NIE							
序号	发生环境 风险对象	风险类别	发生原因	产生危害				
1	爆破器材库	爆炸产生 CO、SO ₂ 等	自然灾害、储存、管理、 维护不善	人员伤亡、损坏设施、环 境污染				
2	危废暂存间	废油泄漏、 火灾产生的 CO、SO ₂ 等	自然灾害、储存、管理、 维护不善	人员伤亡、损坏设施、环 境污染				
3	柴油罐、橇装 式加油装置	柴油泄漏、 火灾产生的 CO、SO ₂ 等	自然灾害、储存、管理、 维护不善	人员伤亡、损坏设施、环 境污染				

5.3.4.2 生产设施风险识别

矿山开采中, 炸药在生产场所每个爆破孔均为数公斤小剂量的使用; 其他过

程物料不存在易燃易爆或有毒有害性,也没有风险性的生产设施或装置,因此是一个发生生产设施危险性较小的行业。但从实际情况来看,采矿行业的危险性主要来自采矿过程的风险事故,是矿难安全事故的多发行业,所以防范安全风险事故是该行业的重点。

5.3.4.3 爆破材料库风险识别

本矿设爆破器材库布置于 I 露采坑北侧约 700m 处,在矿区生活区东北部,直线距离 4.1km 左右。爆破器材库应按要求设置防、避雷装置和监控装置。炸药和雷管的危险性主要表现为易爆,因此,爆破器材库的风险主要为爆破器材意外爆炸队人员造成的危害,以及对周边环境的污染影响。其中,环境危害主要为爆炸后引发火灾时,对其周边区域生态环境的影响。

5.3.5 环境风险分析

5.3.5.1 爆破材料库环境风险分析

(1) 选址合理性分析

根据《爆破安全规程》相关规定,爆破材料库址与工业场地边缘的距离要求 见表 5.3-9。

存药量 t	≤200	<150	<100	< 50	<30	<20	<10	/5
	≥150	≥100	≥50	≥30	≥20	≥10	≥5	7
最小外部距离 m	1000	900	800	700	600	500	400	300

表 5.3-9 地面爆破材料库至矿体部边缘的安全允许距离

本矿爆破材料库单库储存量为 50t 以下,与周边距离应不小于 700m。爆破材料库周边无敏感目标,与生活场地直距约 4.1km,与采矿工业广场约 1.7km,该爆破材料库外部安全距离满足《爆破安全规程》要求,选址合理。

(2) 环境安全分析

本工程使用的危险物质炸药是一种含有少量水分的多组分均匀分布的爆炸混合物,常温下化学性质稳定,与外界物质接触时,能发生氧化反应,生成高感度物质,在《危险化学品目录》(2015年版)中为第一类易爆炸物质,雷管也属于易爆炸物质。

炸药的爆炸是一种化学过程,但与一般的化学反应过程相比,具有三大特征:

(1) 反常过程的放热性。一般常用炸药的爆热约在 3700~7500kJ/kg。

- (2)反应过程的高速度。许多炸药的氧化剂和还原剂共存一个分子内,能够发生快速的逐层传递的化学反应,使爆炸过程以极快的速度进行,通常为每秒几百米或几千米。
 - (3) 反应成物含有大量的气态物质。

炸药在运输、贮存、使用过程中的环境问题可归纳为如下三类:由于爆破力学效应,产生地震波、冲击波和噪声;由于炸药爆炸时的化学反应,产生大量的有毒气体;突发性爆破事故,如炸药的早爆、拒爆和因操作失误而引起的安全事故。如果贮存或使用过程中违反爆破安全规程的有关规定,一旦发生爆炸事故,往往造成生命财产重大损失。

5.3.5.2 油品风险事故影响分析

- (1) 火灾爆炸危险性分析
- ①油品的易燃、易爆性

油品挥发出来的蒸汽与空气混合,浓度处于爆炸浓度范围内时,遇有一定能量的着火源,容易发生爆炸,爆炸浓度(或极限)范围越宽,爆炸危险性就越大。在油品储运过程中,爆炸和燃烧经常同时出现。由于油品蒸汽具有燃烧和爆炸性,因此在生产操作过程中,应防止其可燃性蒸汽的积聚,尽可能将其浓度控制在爆炸下限以下,以防止火灾、爆炸事故的发生。

②油品有较大的蒸汽压

储存的柴油是蒸汽压较大的液体,它们易产生能引起燃烧所需要的最低限度的蒸汽量,蒸汽压越大,其危险性也越大。另外,温度对蒸汽压的影响很大,温度升高,其蒸气压将迅速增大。所以盛装易燃油品的容器,如储罐、槽车等,应有足够的强度,以防止容器胀裂。此外,还应使油品远离热源、火源。

③油品易积聚静电

据资料介绍,电阻率在 1010~1515Ω.cm 范围内的油品容易产生和积聚静电, 且不易消散。储存的油品都具有易积聚静电荷的特点,在油品储运和生产过程中, 其静电的产生和积聚量的大小与管道内壁粗糙度、流速、运送距离以及储运设备 的导电性能等诸多因素有关。静电放电是导致火灾爆炸事故的一个重要原因。

④油品的易扩散、流淌性

易燃油品的粘度一般较小,容易流淌扩散。同时,由于其渗透、浸润和毛细管引力等作用,而扩大其表面积,使蒸发速度加快,并向四周迅速扩散,与空气混合,遇有火源极易发生燃烧爆炸。

⑤油品的受热易膨胀性

油品受热后,温度升高,体积膨胀,若容器灌装过满,管道输油后不及时排空而又无泄压装置,会导致容器和管道的损坏,可能引起油渗漏和外溢。另一方面,由于温度降低,体积收缩,容器内有可能出现负压,也会使容器变形损坏。

(2) 设备火灾爆炸危险特性分析

油罐等设备本身设计不合格,或制造存在缺陷,造成其耐压能力不够,发生破裂,导致油品泄漏,遇火源则发生火灾、爆炸事故;油罐与外部管线相连的阀门、法兰、人孔等,若由于安装质量差,或由于疏忽漏装垫片,以及使用过程中的腐蚀穿孔或因油罐底板焊接不良而产生疲劳造成的裂纹等,都可能引起油品泄漏,泄漏油品遇点火源则易导致火灾、爆炸事故;另外,油罐在防雷设施失效的情况下遭受雷击、遭受电火花或在罐区内违禁使用明火、检修清洗时违规操作等情况,也易诱发火灾、爆炸事故。

装卸油泵所输送介质为柴油易燃物质,操作压力较高,若泵的出口压力超过 了正常的允许压力,泵盖或管线配件就可能崩开而喷油,油泵亦会因密封失效或 其它故障造成原油泄漏,当有点火源存在时,将可能导致火灾、爆炸事故的发生。

- (3) 卸油、发油过程火灾爆炸危险特性分析
- ①油罐漫溢: 卸油时液位检测不及时易造成油罐漫溢。油罐漫溢后,周围空气中油蒸气的浓度迅速上升,达到或超过爆炸极限,遇明火即可能发生爆炸燃烧事故。
- ②油品滴漏:卸、发油时,若油管破裂、密封垫破损、接头、紧固螺栓松动等原因使油品泄漏至地面,遇明火即可发生燃烧。
- ③静电起火:由于油管线无静电接地连接、油罐车无静电接地或静电接地不良等原因,造成静电积聚可引起火灾、爆炸事故。
- ④操作过程遇明火:在非密闭卸油、发油过程中,大量油蒸气从卸油口逸出, 当周围出现烟火、火花时,就会产生爆炸燃烧。
 - (4) 次生大气污染物对环境的影响分析

工程储油罐发生泄漏后,引发火灾、爆炸事故,次生大气污染物主要为柴油不完全燃烧产生的 CO 以及 THC 等。由于工程储油罐容积较小,发生事故后可及时有效得到处置,其次生大气污染物对环境影响较小,在可控范围内。

5.3.5.3 井巷工程事故风险分析

本工程包括井下采矿工程,建设及运行过程中存在以下环境风险:

- (1) 地质灾害风险;
- (2) 井下安全事故风险。

矿井突水、崩塌安全隐患灾害对人体和环境的损害见表 5.3-10。

风险类型	对人体与环境损害						
地质灾害	地表裂缝错动会使影响范围内的建(构)筑物及天然地物受到破坏;行人、 机械及车辆等误入错动区会受到损害;暴雨洪水汇入会危及井下安全。						
矿井突水及 骨顶	对井下人员和内、外环境造成损害,发生率较大,瞬间会发生淹井,造成人员伤亡,改变地下水环境原有状况、补给径流、排泄途径,局部影响地表水与地下水的水力联系,并增加了排水量。巷道骨顶会造成井下伤亡事故。						

表 5.3-10 风险表征表

5.3.5.4 拦挡坝溃坝事故发生可能性分析

排土场是一个具有高势能的人造泥石流的危险源,各种天然的和人为的不利因素威胁着它的安全,一旦失事,将会造成巨大的灾难与损失。排土场可能存在的风险、有害因素有:拦挡坝坝体失稳、溃坝。

对溃坝事故用预先危险性分析法(PHA)分析如下:

潜在 事故	产生原因	触发条件	事故后果	危险 等级	措施
	(1) 场内存水过	(1) 设计	(1) 坝体垮塌,导		(1) 认真选址,并
	多;	不合理;	致人员伤亡,财产		做好工程地质勘察
坝体	(2) 汛期雨量大;	(2) 截洪	损失和严重的环境		工作;
整体	(3) 地震;	沟排水达	污染;		(2)请具有资质和
失	(4)排水构筑物堵	不到设计	(2) 排土场坝体局	IV	经验的设计人员精
稳、	塞、损毁;	要求、洪水	部滑坡、沉陷阱、		心设计渣场坝体,
溃坝	(5) 坝体出现裂	大量涌入	威胁整体的安全;		严格审查设计方
	缝、滑坡、渗漏以	场内。	(3) 排土场溃坝对		案;
	及管涌流土;	(3) 未在	距离较近(500m)		(3)严格实行工程

表 5.3-11 溃坝事故预先危险性分析表

潜在事故	产生原因	触发条件	事故后果	危险 等级	措施
	(6) 坝体施工不	堆场周围	的天山南脉水源涵		监理制,确保渣场
	当。	山坡修建	养生态保护红线造		坝体施工质量。
		截、排水沟	成环境污染。		

由以上分析看出,排土场坝体整体失稳须重点进行预防与控制。

5.3.6 风险事故防范措施

5.3.6.1 工业场地及建、构筑物布置

- (1)在该建设项目施工前要对工业场地的开挖边坡稳定性进行研究,并对场地工程地质进行勘察,验算地基的稳定性。确保所选的井工程布置及其构筑物,不受岩移、滑坡、滚石等危害;
- (2) 井巷应设在稳固的岩层中,避免开凿在含水层、断层或断层破碎带、 岩溶发育带中;
- (3)在保证安全的前提下,主要井巷工程应布置在工程量和总运输功最小的矿体下盘。平硐口、井口位置应便于布置各种建筑物、调车场、堆放场地,尽量不占或少占草场;
- (4)回风井应布置在主导风向的下侧方向。如因各方面的情况影响时,出 风口必须采取降尘措施,使排出污风达到矿山安全规程的排放标准;
- (5)全矿生产设备按生产工艺流程顺序配置,生产作业线不交叉,采用短捷的运输线路或运输皮带等合理的储运方式。各生产设备点为操作人员留有足够的操作场地;
- (6) 各建筑物均按当地地震烈度进行设防,重要建(构)筑物地震设防烈度应提高一度设防;
- (7) 矿山工业场地及建(构)筑物高度超过 15m 的设置避雷针或避雷带,以防雷击:
 - (8) 对于可能发生崩塌、滑坡、泥石流等的地带,不设工业场地和生活区;
 - (9) 在坑内设置安全警示标志; 在井下车场设中段简图, 标明进出方向。

5.3.6.2 爆破事故预防及爆破器材管理措施

本工程爆破工作全部委托民爆公司完成,主要提出以下措施:

- (1) 在爆破作业现场临时存放民用爆炸物品的,应当具备临时存放民用爆炸物品的条件,并设专人管理、看护,不得在不具备安全存放条件的场所存放民用爆炸物品;
- (2)建设单位委托专业的危险品运输车辆承担矿区爆破器材的运输,运输车要远离火种、热源,防止阳光直射,保证运输的安全。运输时车辆上标注清楚醒目的危险警示标志:
- (3) 爆破作业、火药库管理、器材运输、存放、加工使用必须严格遵循《爆破安全规程》(GB6722-2014):
- (4) 从事爆破作业人员必须受过爆破技术训练,熟悉爆破器材性能、操作 方法和安全规程;
 - (5) 爆破施工的安全技术措施要点:
- ①炮眼应严格按规定的药量装药堵塞。堵塞时应注意保持导火索、导爆索及电雷管脚线的完整。
- ②装药必须用木棒把炸药轻轻压入炮孔,严禁冲捣和使用金属棒。堵塞炮泥时切不可击动雷管。
- ③炮孔深度超过 4m 时,须用两个雷管起爆;如深度超过 10m,则不得用火花起爆。
- ④在闪电鸣雷时,禁止装药、安装电雷管和联接电线等操作,应迅速将雷管的脚线和电线的主线两端短路。所有工作人员应立即离开装药地点,隐藏于安全区。
 - ⑤放炮前必须划出警戒范围, 立好标志, 并有专人警戒。
- ⑥扩大药壶时,不得将起爆药卷的导火索点燃后丢进炮眼去。扩大眼深超过4m的药壶,宜采用电雷管或导爆索起爆。在两次扩大爆破之间要留有炮眼冷却需要的时间: 当眼深在5m之内时,使用硝铵炸药或梯思梯炸药时,其间隔时间不少于15分钟;使用硝化甘油炸药时,其间隔时间不少于30分钟。
 - (6) 预防盲炮的措施:
- ①改善爆破器材的保管条件。防止导爆管受潮变质,发放前应严格检验,对质量不合格的应予报废。
 - ②改善操作技术。对起爆器应保证导爆管紧密联结,避免导爆管与药包脱离。

- ③在有水工作面装药,应采取可靠的防水措施,以避免爆炸材料受潮吸水。
- ④发现盲炮要及时处理,暂不能及时处理的盲炮,应在其附近设明显标志, 并采取相应措施。处理盲炮时,禁止无关人员在附近做其他工作。
- (7) 各主要进口设爆破安全信号,爆破时设安全警戒线,并有专门人员警戒。

5.3.6.3 井巷工程事故风险防范措施

- (1) 在矿山基建期间或基建结束后,应安排采矿方法试验。通过试验可以达到:找到合适的采场结构参数,可以初步掌握地压活动规律,掌握该采矿方法的主要技术经济指标;
 - (2) 采场作业应首先进行安全检查, 然后方可作业;
 - (3) 在每个采场均设有两个可到达地表的安全出口:
- (4)对于不稳固的采场顶板及掘进作业面采用喷锚、喷锚网及砌筑混凝土支护:
 - (5) 井下主要生产硐室均采用喷射或砌筑混凝土支护,确保安全;
- (6)对于采矿出现的陷坑、裂缝及可能出现的地表塌陷范围,要及时圈定, 并设置标志和采取安全措施;
- (7)上山等处设明显标志、照明、护栏和盖板;及时封闭已结束回采的采 场及溜井;
- (8)制定科学合理的采掘计划以指导生产,采矿作业应严格按设计顺序进行。

5.3.6.4 油品储存罐风险预防措施

- (1)做好油罐防渗漏措施。可采用玻璃钢防腐防渗技术,对储油罐内外表面、防油堤的内表面、油罐区地面、输油管线外表面做"六胶两布"防渗防腐处理。
- (2) 地下储油罐周围设计防渗漏检查孔或检查通道,为及时发现地下油罐 渗漏提供条件,防止成品油泄漏造成大面积的地下水污染。
- (3) 在储油罐周围修建防油堤,建应急池,防止成品油意外事故渗漏造成大面积的环境污染。
 - (4) 建立事故管理和应急计划,设立厂内急救指挥小组,并和当地有关化

TEL: 0991-3333881

学事故急救部门建立正常的定期联系。

- (5) 备有一定数量灭火器材并保持有效状态以及防毒面具等气防设备。
- (6)加强设备(包括各种安全仪表)的维修、保养,杜绝由于设备劳损、 折旧带来的事故隐患。
- (7)加强对职工的教育培训,实行上岗证制度,增强职工风险意识,提高事故自救能力,制定和强化各种安全管理、安全生产的规程,减少人为风险事故(如误操作)的发生。

5.3.6.5 废机油储存风险预防措施

- (1) 危险废物存储间地面已采取防渗措施,并进行水泥硬化,并设置导流槽及防溢流围堰;本次评价要求危废暂存间应采取防盗措施,并由专职人员进行管理,满足《危险废物贮存污染控制标准》(GB18597-2001)(2013年修订)。
- (2)建立事故管理和应急计划,设立厂内急救指挥小组,并和当地有关化 学事故急救部门建立正常的定期联系。
 - (3) 备有一定数量灭火器材并保持有效状态以及防毒面具等气防设备。
- (4)加强设备(包括各种安全仪表)的维修、保养,杜绝由于设备劳损、 折旧带来的事故隐患。
- (5)加强对职工的教育培训,实行上岗证制度,增强职工风险意识,提高事故自救能力,制定和强化各种安全管理、安全生产的规程,减少人为风险事故(如误操作)的发生。

5.3.6.6 废机油暂存污染防控和管理措施

(1) 危险废物的产生与收集

危险废物在收集时,按《危险废物收集贮存运输技术规范》(HJ2025-2012) 要求,根据危险废物的性质和形态,采用相应材质、容器进行安全包装,并在包 装的明显位置附上危险废物标签。通过严格检查,严防在装载、搬迁或运输中出 现渗漏、溢出、抛洒或挥发等不利情况。危险废物的收集过程应该以无害化的方 式运行,收集过程采取以下防治措施,避免可能引起人身和环境危害事故的发生;

①危险废物收集和运输人员应配备必要的个人防护装备,如手套、防护镜、防护服、防毒面具或口罩等,防止收集和运输过程对人体健康可能存在的潜在影

响:

- ②危险废物运输前,应进行合理包装,防止运输过程出现泄漏;
- ③废变压器油有渗漏或泄漏的,其渗漏或泄漏液应储存在密闭的、与危废相容的容器中。

危废在堆存期间必须严格按照《危险废物贮存污染控制标准》 (GB18597-2001)(2013修改)有关规定执行,将危险废物通过专用容器分类 收集,贴上危险废物的标签,于项目所设置的危险废物暂存间内独立存放。危险 废物收集容器材质和衬里必须与危险废物相容,危废应填写《危险废弃物贮存环 节记录表》,严格按照《危险废物贮存污染控制标准》(GB18597-2001)(2013 修改)中要求执行。按照危险废物特性分类进行收集,按种类分别存放。

(2) 危险废物的贮存

- ①危险废物单独分类收集、存放管理。废变压器油用专用标准铁桶贮存;对 危险废物的容器或包装物以及收集、贮存、运输危险废物的设施、场所,必须设 置危险废物醒目的警示标志。危险废物盛装容器上粘贴清晰易辨的标签,储罐上 应粘贴危险废物标识标签,并注明危险废物的来源、数量等。
 - ②对危险废物的出入流动做好记录;
 - ③危险废物容器之间留有间隔和搬运通道:
 - ④配备消防设备和报警装置。
 - (3) 危险废物的转移及运输

厂内转移均在危废暂存间内部进行,设有围堰、应急事故池等可收集泄露的 液态危险废物,场内转移运输过程对环境影响不大。危险废物自暂存间外运至由 有危废处置资质的单位进行处置,整个运输过程由具备危险废物运输资质的运输 单位承担,危废转运过程对环境影响不大。

危险废物转移严格按照《危险废物收集贮存运输技术规范》(HJ2025-2012)及《危险废物转移管理办法》(部令 第 23 号)执行。危险废物厂区内部转运应综合考虑厂区情况避开办公区,采用专用的工具,内部转运结束后经应对转运路线进行检查和清理确保无危险废物遗失在转运路线并进行记录。危险废物公路运输应按照《道路危险货物运输管理规定》(交通部令〔2016 年〕第 36 号)执行。

对于危险废物的运输要求如下:

- ①运输危险废物的运输车辆应按《道路运输危险货物车辆标志》 (GB13392-2005)的规定悬挂相应标志。
- ②专用车辆应当配备符合有关国家标准以及与所载运的危险货物相适应的 应急处理器材和安全防护设备。
- ③运输车辆在公路上行驶应持有通行证。其上应证明废物的来源、性质、运往地点,必要时须有单位人员负责押运工作。
- ④运输公司应制定详细的运输方案及路线,并制定事故应急预案,配备事故 应急及个人防护设备,以保证在收集、运输过程中发生事故时能有效地减少以至 防止对环境的污染。
 - ⑤运输时应采取有效的包装措施,以防止有害成分的泄漏污染。
- ⑥运输车辆驾驶员和押运人员需持有"道路危险货物运输资格证",必须经过 危险废物和应急救援方面的培训,包括防火、防泄漏以及应急联络等。
 - ⑦危险废物禁止混入非危险废物中贮存,禁止与乘客在同一运输工具上载运。
 - ⑧运输路线尽量避开特殊敏感区。

(4) 联单制度

建设单位必须建立危险废物转移联单制度,收集贮存的危险废物应严格按照《危险废物转移管理办法》中的有关要求管理,危险废物转移程序如下:

- ①危险废物转移联单应当根据危险废物管理计划中填报的危险废物转移等 备案信息填写、运行。
- ②采用联运方式转移危险废物的,前一承运人和后一承运人应当明确运输交接的时间和地点。后一承运人应当核实危险废物转移联单确定的移出人信息、前一承运人信息及危险废物相关信息。
- ③移出人每转移一车次同类危险废物,应当填写、运行一份危险废物转移联单,每车次转移多类危险废物的,可以填写、运行一份危险废物转移联单,也可以每一类危险废物填写、运行一份危险废物转移联单。
- ④采用联运方式转移危险废物的,前一承运人和后一承运人应当明确运输交接的时间和地点。后一承运人应当核实危险废物转移联单确定的移出人信息、前一承运人信息及危险废物相关信息。

转移危险废物的,须按照国家有关规定通过国家危险废物信息管理填写危险

废物电子转移联单,并向危险废物移出地设区的市级以上地方人民政府生态环境行政主管部门提出申请。移出地设区的市级以上地方人民政府生态环境行政主管部门应当经接受地设区的市级以上地方人民政府生态环境行政主管部门同意后,方可批准转移该危险废物。未经批准,不得转移。转移危险废物途径移出地、接受地以外行政区域的,危险废物移出地设区的市级以上地方人民政府生态环境行政主管部门应当及时通知沿途经过的设区的市级以上地方人民政府生态环境行政主管部门。

(5) 委托处置

危废暂存间贮存的危险废物由有危废处置资质的单位进行处置,危废处置单位使用专用车辆至厂内收集、转移危险废物,建设单位不自行外运、转移。危险废物委托处置后,对环境影响不大。

(6) 管理措施

企业应结合自身实际,建立危险废物管理台账,规范危险废物情况的记录,记录上须注明危险废物的种类、来源、数量、性质、产生环节、利用处置和包装容器的类别、入库日期、存放库位、废物出库日期及接收单位名称,确保厂内所有危险废物流向清楚规范。

按规定申报危险废物产生、贮存、转移、利用处置等信息,制定和落实危险废物年度管理计划,执行危险废物申报登记制度,并在"固废管理系统"中备案。及时向当地生态环境部门申报危险废物种类、产生量、流向、处置等资料,办理临时申报登记手续。严格执行危险废物交换转移审批制度。所有危险废物交换转移向生态环境部门提出申请,经生态环境部门预审后报上级生态环境部门批准。危险废物交换转移前到当地生态环境部门网上申请联单。绝不擅自交换、向无危险废物经营许可证单位转移。必须定期对所暂存的危险废物包装容器及暂存设施进行检查,发现破损,应及时采取措施清理更换。

5.3.6.7 洪水风险预防措施

- (1)工业场地、排土场等所有固定建、构筑物及设施均布置在开采错动范围之外。并且均高出当地最高洪水位 1m 以上。
 - (2) 工业场地周边设截洪沟, 防止地表水将污染水带入自然水系。
 - (3)确保场内排水系统的畅通,在雨季特别是暴雨期应加强对工业场地、

排土场、拦挡坝的巡逻检查,如发现坝体出现裂缝应采取补救措施。拦挡坝溃决后应立即采取抢救措施,防止固废冲刷进萨瓦亚尔顿河,同时配备必需的通信设施,保持与地方政府的联系,如发现坝体开裂等垮坝征兆,应立即组织力量进行抢修和安全加固。

- (4) 组织防洪水检查,并编制防洪计划,其工程必须在雨季前竣工。
- (5) 雨季应有专人检查矿区防洪情况,情况危险时,必须停产,所有人员 必须撤出井下,确保人员安全。

5.3.7 风险应急预案

预防是防止事故发生的根本措施,但一旦发生事故,处置是否得当,关系到事故蔓延的范围,损失大小,因此,也应有应急措施。根据本工程环境风险分析的结果,对于该项目可能造成环境风险的突发性事故制定应急预案纲要,供项目决策人参考。

5.3.7.1 组织机构及职责

建设单位应设制专门机构负责项目施工及运营期的环境安全。其职责包括:

- (1)负责统一协调突发环境事件的应对工作,负责应急统一指挥,同时还负责与项目区外界环境保持紧密联系,将事态的发展向外部的支持保障机构发出信号,并及时将反馈信息应用于事故应急的领导和指挥当中。
- (2)保证应急事故的各项资源,包括建立企业救援队,并与社会可利用资源建立长期合作关系;当建设单位内部资源不足、不能应对环境事故,需要区域内其他部门增援时,由建设单位的环境安全管理部门提出增援请求。
- (3) 在事故处理终止或者处理过程中,要向公众及时、准确地发布反映环境安全事故的信息,引导正确的舆论导向,对社会和公众负责。

5.3.7.2 应急预案内容

建设单位应对本次环评提出的可能的环境事故,编制应急预案。从应急工作程序上,可以分为预防预警、应急响应、应急处理、应急终止、信息发布五个步骤。建设单位编制的环境事故应急预案应对以下内容进行细化,并明确各项工作的负责人。

(1) 预防预警

预防与预警是处理环境安全突发性事件的必要前提。

根据突发事故的严重性、紧急程度和可能波及的范围,划分预警级别,并根据事态的发展情况和采取措施的效果,提高或者降低应急预警级别。

(2) 应急响应

环境安全突发事件发生后,应立即启动并实施相应应急预案,及时向克州生态环境局乌恰县分局、克州政府以及自治区相关部门上报;同时,启动建设单位应急专业指挥机构;应急救援力量应立即开展应急救援工作;需要其他应急救援力量支援时,应及时向乌恰县政府提出申请。

(3) 应急处理

对各类环境事故,根据响应的救援方案进行救援的处理,同时应进行应急环境监测。根据监测结果,综合分析突发环境事件污染变化趋势,并通过专家咨询和讨论的方式,预测并报告突发环境事件的发展情况和污染物的变化情况,作为突发环境事件应急决策的依据。

(4) 应急终止

应急终止须经现场救援指挥部确认,由现场救援指挥部向所属各专业应急救援队伍下达应急终止命令。应急状态终止后,建设单位应根据上级有关指示和实际情况,继续进行环境监测和评价工作,直至其他补救措施无需继续进行为止。

(5) 信息发布

突发环境安全事件终止后,要通过报纸、广播、电视和网络等多种媒体方式, 及时发布准确、权威的信息,正确引导社会舆论,增强对于环境安全应急措施的 透明度。

5.3.7.3 监督管理

- (1)对危险源进行定期检查和巡回检查,随时掌握动态变化情况,一旦出现危及安全生产的问题,立即采取措施进行处理;
 - (2) 立即组织撤离排土场下游人员,避免人员伤亡。
- (3)掌握危险源的基本情况,了解发生事故的可能性及严重程度,搞好现场安全管理;
 - (4) 安排保卫人员负责维护事故现场秩序,保证抢救物资的运输畅通和矿

区治安。

- (5)领导要安排医务人员到达事故现场附近,对抢救出的受伤人员进行紧急医疗救治。
- (6)对事故现场进行清理,如造成植被损害,尽量进行恢复,不能恢复的要进行补偿,补偿标准应按照当地政府确定的征地标准进行。造成人员伤亡的,应根据国家和当地有关补偿标准进行补偿。

5.3.7.4 日常预防措施

- (1) 在排土场周围修好排水沟, 疏导雨水, 防止泥石流, 下部修筑拦石坝。
- (2) 做好安全警示标志。
- (3) 加强检矿人员的安全教育。
- (4) 对排土场坡度、挡墙加强管理。
- (5) 修筑防护平台, 定期做好沉降观测; 加强排土场绿化。

5.3.7.5 应急情况下应对措施

若发生突发事件必须采取如下措施:

- (1) 必须立即报告当地政府、公安部门和公司领导(或安全部门);
- (2) 及时疏散事故区附近人员;
- (3) 事先制定有效处理事故的行动方案,方案要经有关部门认同,并能与矿区、救护队、医务室、消防队充分配合,协调行动;
- (4)应有制止事故蔓延,控制和减少影响范围的程序救护的具体行动计划,包括救护措施,保护矿工、国家财产及周围环境安全必须采取的措施和方法;
- (5) 矿区安全部门工作人员和富有事故处置经验的人员,要轮流值班,监 视事故现场及其处置实施直至事故结果;
 - (6) 训练事故处置人员(包括事故发生时的处置和补救)。

5.3.8 风险评价结论

综上所述,本工程化学危险品的运输储存和使用过程中由于设备质量、人为操作等原因,存在着发生泄漏和突发性污染事故风险的可能性。对于这种风险,本工程制定相应的防范措施及应急预案,明确责任人员,配备一定的防治设备和应急响应能力。

由于本工程的环境风险主要是人为事件,完全可以通过政府各有关职能部门加强监督指导,企业内部制定严格的管理条例和岗位责任制,加强职工的安全生产教育,提高风险意识。在项目采取相应的防范措施后,可以减少项目的环境风险,降低环境风险事故的危害程度,且在加强管理及提高职工操作水平的前提下,本工程的环境风险是可以接受的。

建设项目环境风险简单分析内容详见表 5.3-12。

表 5.3-12 建设项目环境风险简单分析内容表

建设项目 名称	新疆萨瓦亚尔顿金矿采矿工程			
建设地点	新疆维吾尔自治区克孜勒苏柯尔克孜自治州乌恰县			
地理坐标	经度 74°17′20.54″ 纬度 40°3′47.21′			
主要危险 物质及分 布	柴油:柴油储罐区;废机油:危废暂存间;炸药:储存于爆破器材库。			
环境影响 途径及危 害后果 (大表水、 地下水 等)	(1) 炸药在运输、贮存、使用过程中由于爆破力学效应,产生地震波、冲击波和噪声;由于炸药爆炸时的化学反应,产生大量的有毒气体,对环境空气造成污染以及人员中毒,造成生命财产重大损失。 (2) 柴油/废机油发生泄漏,从而污染项目矿区的土壤、包气带,最终下渗对地下水造成污染。 (3) 柴油/废机油泄漏发生火灾、爆炸事故,造成矿区及其周边的人员伤亡;柴油储罐发生火灾、爆炸事故次生污染为不完全燃烧产生 CO,对环境空气造成污染以及 CO 扩散造成人员中毒。 (4) 井巷工程事故风险主要为地质灾害风险和井下安全事故风险。 (5) 拦挡坝溃坝事故。			

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

大气环境防范措施: 在发生事故时,应及时组织附近人群转移,以减少对人群的伤害。

防渗措施:项目区内一般区域采用水泥硬化地面,罐区、危废暂存间采取严格 防渗。

围堰设置:在罐区、危废暂存间设置围堰,确保泄漏后化学品不会溢出到围堰外。

风险防范 措施要求

防火防爆措施:从总平面布置、工艺、自动控制、建/构筑物防火、电气防火、消防系统、设备泄压等方面采取防火、防爆控制措施。

防毒措施:尽量减少就地操作岗位,使作业人员不接触或少接触有毒物质,防 止误操作造成中毒事故。

运输防范措施:坚持"预防为主,防治结合"的原则,首先做好预防工作,然后完善控制污染事故危害的措施。

安全管理措施:设置安全管理机构,建立安全管理制度,加强人员培训,预防安全事故发生。

6环境保护措施及其可行性论证

6.1 施工期污染防治措施分析

本工程施工期主要进行构筑物基础工程、道路工程以及表土开挖等建设内容, 在建设期间,各项施工活动不可避免的将会对周围的环境及生态环境造成破坏和 产生影响,主要包括粉尘、噪声、固体废物、废水等对周围环境的影响,以及对 生态环境的影响。因此建设项目必须采取合理可行的污染防治控制措施,以尽量 减轻其污染程度,缩小其影响范围。

6.1.1 施工期大气污染防治措施分析

(1) 施工场地扬尘污染防治措施

本工程建设施工过程中产生的扬尘将会造成周围大气环境的污染。经类比调查,同类施工工地粉尘的危害较扬尘更为严重。施工期间产生的粉尘污染主要决定于施工作业方式、材料的储运以及风力等因素,其中风力因素的影响最大。为使施工过程中产生的扬尘对周围环境空气的影响降低到最小程度,建议采取以下防护措施:

- ①在施工机械机运行时洒水防止扬尘。对操作人员实行卫生防护,如配带口 罩风镜等。
- ②对于运输沙土及其它施工材料、倒运土方的车辆应加盖篷布,以避免运输过程中产生的粉尘影响运输道路沿途的空气质量,保证施工车辆工况良好,以降低尾气 CO、NOx、SO₂等的排放。
- ③运输道路应经常洒水,以减少扬尘污染,限制车辆行驶速度(不大于5km/h)。
- ④文明施工,对施工机械进行适当的保养、维修和操作,以减少施工作业中 大气污染物的排放。
- ⑤禁止大风天气施工,避免在大风天气进行大量挖土、堆土及运输土方的工作。
 - ⑥施工过程中如遇重污染天气预警,必须立即停止施工。

- ⑦做好施工现场周边土地平整工作,对挖方产生的临时堆土实行定期喷洒、 覆盖等防护措施。
 - ⑧施工场地四周设防尘彩钢板减少扬尘逸散。
 - (2)运输扬尘及施工机械废气污染防治措施
 - ①施工场地内限速行驶并保持路面的清洁。
 - ②加强对施工车辆的检修和维护,严禁使用超期服役和尾气超标的车辆。
 - ③对施工期进出现场车流量进行合理安排,防止施工现场车流量过大。
- ④尽可能使用耗油低,排气小的施工车辆,选用优质燃油,减少机械和车辆 有害废气排放。
- ⑤施工过程中禁止将废弃的建筑材料作为燃料燃烧,工地食堂应尽量使用清洁燃料。

6.1.2 施工期废水防治措施

施工过程中产生废水主要为生活废水和施工废水,本环评提出的处理措施如下:

- (1)施工期生活污水产生量不大,可依采取优先建设生活污水处理设施处理后,综合利用。
- (2)施工场地设置临时沉砂池,将施工废水沉淀后回用于施工工序,如洒水降尘等,禁止排入萨瓦亚尔顿河内。

6.1.3 施工期噪声防治措施

为了减轻施工噪声对周围环境的影响,建设方应采取有效措施控制施工期噪声。施工期噪声污染控制对策:

- (1) 施工机械噪声控制措施
- ①施工现场周围采用符合规定强度的硬质材料(夹芯彩钢板、砌体)设置不低于2.5m的密闭围档,确保基础牢固,表面平整和清洁。
- ②将易产生噪声的作业设备,尽可能设置在设有隔音功能的临房、临棚内操 作,从空间布置上减少噪声污染。
- ③夜间施工按规定办理夜间施工许可与备案手续并向社会公示。夜间施工不准进行捶打、敲击和锯割等作业。

- ④禁止使用国家明令禁止的环境噪声污染严重的设备。
 - (2) 施工运输车辆交通噪声控制措施

施工过程中各种运输车辆的运行,还将会引起公路沿线噪声级的增加。根据类比调查,重型车辆怠速行驶时噪声值约为65~80dB(A),正常行驶时约为65~90dB(A),施工期间不可避免对周边环境造成一定的影响。因此,建设方应加强对运输车辆的管理,尽量压缩施工区汽车数量和行车密度,设置禁鸣警示牌。

- (3) 土方工程施工噪声控制措施
- ①挖掘机、推土机、重型运输汽车等产生噪声的施工机械进场必须先试车,确定润滑良好,各紧固件无松动,无不良噪声后方可投入使用,运行过程中应经常检查保养,不准带"病"运转。
 - ②尽量避免夜间施工。

6.1.4 施工期固体废物防治措施

施工时由于露天表土剥离、工业场地建设平整土地及后期井下开拓,建设构筑物等过程中会产生一定量的施工余土、废石和部分建筑垃圾。

施工所产生的弃土、弃渣应全部用于回填矿区低洼地,平整地面。废石暂存于矿区规划的排土场,后期用于恢复采空区。并配备相应管理人员,加强现场监管。

施工区垃圾具有分散、不易收集等特点,对其处理措施有以下几方面:

- (1)根据施工布置,设置加盖垃圾箱2个,向广大施工人员作好卫生宣传工作,使他们养成向垃圾收集站投放垃圾的习惯。
 - (2) 配设垃圾清运员及相应工具,由专人及时进行垃圾的清运工作。
- (3)做好垃圾收集及处理的规划工作,将清运后的垃圾倒入指定的垃圾填埋场中,避免由于垃圾处置不当而造成二次污染。

各施工区作业结束后,要及时、全面地进行清场工作,不得遗留有垃圾,禁 止排入萨瓦亚尔顿河内。

6.1.5 施工期生态环境保护措施

按照《有色金属行业绿色矿山建设规范》(DZ/T0320-2018)有关要求对矿 区永久性占地(采矿场、开拓运输系统、排土场等)进行合理规划及建设,尽量 减少占地;项目施工过程中,剥离的表土作为复垦用土;现场施工机械和人员活动范围严格限制在作业带范围内,道路施工便道的宽度控制在 8m,尽量减少施工破坏面;场内外道路工程所需的填方由挖方解决,所需砂、砾石料由当地现有商业料场购买,不设专门土料场及砂、砾石料场,以避免各分散施工场地的弃土随意堆放;施工作业结束后,结合水土保持方案做好施工迹地的恢复。

- (1)做好本工程的施工组织规划工作,明确工程可能扰动和破坏的范围, 要做到少占地。
- (2) 高度重视原有地表对维护本区生态稳定的重要性,加强对施工队伍的宣传、教育和管理。做好施工组织规划工作,严禁将建设施工材料乱堆乱放,划定适宜的堆料场等临时性场所,以防止植被破坏的范围增大。
- (3)加强宣传教育,严禁采矿人员折损植物,碾踩植被和土壤,尽量避免 因人为活动对植被和土壤造成的不利影响;不得捕杀野生动物或随意捣毁动物的 巢穴。
- (4)加强对工作人员进行环境保护知识教育,提高工作人员的环境保护意识,以减少人为因素对植被的破坏。
- (5)施工机械和运输工具应在规划的道路上行驶,严禁随意行驶,碾压植被,严禁破坏工程区内的植被,将植被损失降至最低。施工结束后,应选择适应当地环境的树种对施工场地进行绿化。
- (6)工程施工活动严格控制在划定的范围内,为防止对天然植被及土壤的破坏,对地面建(构)筑物的布置应以"尽量减少占地、避免对植被的破坏"为原则,在总平面布置上充分利用自然地形,本着有利于雨水排除和减少土方量的原则,尽量减少土石方量和占地面积,提高场地利用系数。
 - (7) 合理规划场地道路, 防止汽车乱轧乱碾。
- (8)施工期工业场地产生的挖方全部用于填方,剩余部分用于矿区道路建设。
- (9) 在施工过程中,要严格控制扰动面积,特别是加强施工过程的管理。 利用有水有地的地方,认真做好矿区绿化。
- (10)尽量采取清洁和高效的生产技术及减少生态环境破坏的施工方式,并且优化施工布局,精心组织管理。

- (11) 尽量减少对区域内植被的破坏,对在植被盖度相对较高的区域进行的相关作业时,应预先剥离表层植毡层和将灌丛集中移植到条件较好的地方,以备矿区进行场地恢复时重新覆盖和移植在表面,尽快恢复其生态原貌。
- (12)施工结束后恢复施工迹地,对施工迹地和弃方进行合理平整、利用、 清运,减少水土流失。

(13) 植被保护措施

施工机械及人员行走路线应避开植被区,建筑物、堆场与永久性、临时设施 应尽量避开有植被的地区。设立明显标志指明行车路线,运输车辆不得随意驶离 道路,碾压施工场地周围的植被。施工后期对各类临时占地进行适当平整,保持一定粗糙度并洒水固定,以利于植被恢复。

(14) 野生动物保护

加强施工人员的管理,要求施工单位和人员严格遵守国家法令、坚决禁止捕猎任何野生动物,爱护施工活动附近所有的动植物。

6.1.6 环境保护管理措施

- (1) 应做好施工组织规划工作,要做到少占地;加强施工期间的宣传教育工作,以减少人为因素对植被的破坏。尤其要注意的是,施工车辆、机械应在规划的施工道路上行驶,严禁随意行驶,碾压植被。
- (2)加强对施工人员进行环境保护知识教育。提高施工人员的环境保护意识。
 - (3) 施工期间严禁破坏工程区内与工程本身无关的植被。
- (4) 在签订施工承包合同时,应明确有关环境保护的条款,并在施工监理 过程中予以全过程监督。施工期的环境管理措施由施工部门组织实施。
- (5)根据国家环保部发出的西部建设要加强环保管理的通知精神,对于生态环境影响大的建设项目,应推行施工期环境监理制度。因此本工程在施工期应加强环境监理工作,设专人负责施工期环境保护措施实施的监督和管理工作。

6.2 运营期污染防治措施分析及可行性论证

6.2.1 大气污染防治措施

为降低本工程运营过程产生的废气对项目区及周边环境空气的影响,本次评价提出以下大气污染防止措施:

6.2.1.1 露天采矿废气处理措施

- 1、采掘场、排土场及运输过程中扬尘防治措施
- (1) 穿孔凿岩采用湿式穿孔凿岩,钻机配备干式捕尘器,并对工作面喷雾 洒水降尘,可使空气中的含尘量降到5mg/m³以。
- (2) 爆破采用多排垂直深孔微差松动爆破,减少粉尘量,严禁大药量浅孔爆破,避免形成砂石飞溅和尘土飞扬。并对爆破作业场所、爆堆等进行喷雾洒水降尘预湿,国内外的经验表明,预湿的捕尘效率可达61~83%。
- (3) 装卸作业时降低卸载高度,作业工作面进行喷雾洒水降尘,采取这样的措施后可使附近空气中的含尘浓度下降到2mg/m³,并且避免在大风天气进行作业。
- (4) 采用碎石铺设运输道路,配备1台压路机定期对运输道路压实,定时对路面进行洒水降尘等措施。
- (5) 对采掘场、排土场及运输道路采取铺设洒水管路结合洒水车洒水的方式对采掘场实施降尘,降低污染影响,以保证表面湿度在7%左右为宜。
- (6) 排土场在排土过程中应及时进行碾压,增大排弃岩土致密性和硬度,减少起尘量;顶部、坡面和平台及时砾石压盖,通过洒水使得外排土场表土层形成板结,控制扬尘污染。
 - (7) 在风速达到7级及以上时,应停止采掘、剥离作业。
 - 2、装卸、储存中扬尘防治措施
- (1)本项目露天开采矿石、废石运输采用卡车拉运,土岩由工作面拉运至排土场,矿石由工作面经自卸卡车拉运至选矿厂,在产生扬尘的环节分别采取洒水抑尘措施,满足《大气污染物综合排放标准》(16297-1996)表2新污染源大气污染物无组织排放浓度限值(1.0mg/m³)。
 - (2) 本次排土场采取洒水降尘、覆盖砾石、集中压实堆放等措施,抑尘效

率可达80%,满足《大气污染物综合排放标准》(16297-1996)表2新污染源大气污染物无组织排放浓度限值(1.0mg/m³)。

3、道路扬尘污染防治措施

对运矿、运材料车辆应进行统一管理,限载限速,装满物料后应加盖蓬布防止抛洒碎屑;对附近的道路及专用公路应派专人负责,经常维护以保持良好的路面状况,并及时清扫洒在道路上散状物料,本矿配备洒水车,定期对场地和路面进行洒水,并配以人工清扫,有效减少地面、道路扬尘污染。

有实验表明,如果对车辆行驶的道路进行洒水抑尘,其抑尘效果显而易见。 道路洒水抑尘试验结果见表 6.2-1。

距离(m)	5	20	50	100
TSP 小时浓度	不洒水	10.14	2.89	1.15	0.86
(mg/m^3)	洒水	2.01	1.40	0.67	0.60

表 6.2-1 道路洒水抑尘试验结果

试验结果显示,道路每天实施洒水抑尘作业 4~5 次,可使扬尘量减少 70% 左右,其扬尘造成的 TSP 污染距离可缩小到 20~50m 范围内。本项目建成后估计运送物资、人员、设备及矿石等的运输车辆在 50~60 辆/天,若管理不善将造成较大的道路扬尘、污染道路两侧环境,因此应对工业场地内及附近的运输道路经常洒水、清扫。洒水和清扫次数和洒水量视具体情况而定。采取如下防治措施:

- (1) 道路路面硬化,并加强维护,定期洒水和清扫,一般在清扫后洒水,抑尘效率能达 90%以上。有关试验表明,在道路每天定时适量洒水,其扬尘造成的 TSP 污染距离可缩小到 20~50m 范围。
 - (2) 非箱式车必须加盖篷布, 杜绝飞洒。
- (3)加强对道路的维护,保证其路面处于完好状态,平整完好的路面可以 大大减少汽车尾气和扬尘量。
 - (4) 汽车离开工业场地时,对轮胎经过清洗后方可上路。

上述措施简单易行,关键在于管理,矿方应制定严格的管理措施和监控计划,派专人加强监督管理和实施,即可大大减少因运输造成的扬尘污染。

4、燃油废气防治措施

针对燃油设备和车辆运行时产生的无组织燃油废气,选用低能耗、高效率的

燃油设备和车辆,对其加强日常检及维护保养,加强对燃油设备和车辆的管理;油用优质柴油;在项目区合理设置指示牌,减少燃油设备和车辆运行时间和距离。

6.2.1.2 井下作业废气处理措施

井下采矿生产过程中产生含粉尘和SO₂、NO_x等有害污染气体,对矿工的人身安全和健康构成极大威胁,长期吸入、接触这些矿尘可引起矽肺病、皮肤病等其他疾病。为保护采矿工作面的空气质量,采用的方法就是矿井通风。矿井通风的根本任务是连续不断地向作业地点供给足够的新鲜空气,稀释和排出有害气体及粉尘,确保作业地点有良好的空气质量,保证矿工的安全和健康。

井下爆破作业是矿井废气中烟(粉)尘、SO₂、CO、NO_x的重要来源。为控制污染,除加强井下通风外,还须采取喷雾洒水、湿式作业、定期对主要入风巷道进行洗壁等降尘措施。爆破作业后一般要通风3~4h,再进行放矿等作业。严格实行班末定时爆破制度,采用先进的爆破技术,减少爆破次数和炸药使用量。

目前世界各国对矿山开采过程中废气的防治措施基本相同,主要采用密闭抽 尘、净化、通风、湿式作业和提高设备的防尘防毒效率等措施。我国对井下废气 的治理起步较早,并积累了丰富的经验,具体措施一是通风排尘、排气,二是抑 尘。矿井通风系统一般设有中央对角式、对角式、分区通风和折返式四种类型, 可以根据实际情况选用不同的通风方式,效果基本一致。本工程采用中央进风两 翼对角式通风系统。另外,在掘进工作面和局部硐室采用局部加强通风的措施, 确保通风效果。在抑尘方面,采用湿式凿岩作业,矿岩提升、机车运输采用喷雾 洒水、洗壁等措施,从产尘源头加强控制以达到抑尘的目的。本工程采取的措施 可使采场厂界空气含尘浓度控制在1.0mg/m³以下,确保作业点有良好的空气环境, 保证矿工的健康与安全。上述措施在各矿山广泛采用,效果显著,措施切实可行。

井下抽出的废气经风井排放到大气,由前面工程分析的内容可知,矿井废气中的主要污染物浓度均符合《大气污染物综合排放标准》(16297-1996)表2新污染源大气污染物无组织排放浓度限值(1.0mg/m³),对环境影响不大。

6.2.1.3 无组织扬尘防治措施

为防止排土场、运输车辆等产生的扬尘以及柴油燃烧废气对区域大气环境的 污染影响,特别是对萨瓦亚尔顿河的影响,企业必须制定严格的措施以防止无组织扬尘污染。

对此,本次评价提出以下防治措施:

- (1)对矿山采矿场、工业广场、运输道路等无组织扬尘点定期进行洒水降尘、加大洒水降尘频率,同时还应采取其它抑尘措施,例如在矿石堆放、装卸过程中尽量降低落差,加强调度管理,矿石及时运输。
 - (2) 运输废气污染防治措施:
- ①对运输道路路面尽量进行硬化,进行定期及时清扫,采取洒水措施,并控制车辆行驶速度。
- ②进出场车辆在工业场地入口设置洗车区,车辆经过洗车区时,可去除车辆轮胎上的泥沙。对运输物料覆盖及产品压实措施,控制车速,并专人负责,及时轻扫路面渣土,保持交通道路清洁。
- ③加强对道路的维护,保证其路面处于完好状态,平整完好的路面可以大大减少汽车尾气和扬尘量。
- ④选用国家有关标准的施工机械和运输工具,使用优质动力燃料,对耗油多、效率低、尾气超标严重的老、旧车辆,应及时报废和更新。
- ⑤运输车辆应当严格采取限速、限载、覆盖篷布等措施,并严格要求车辆沿规划道路行驶,严禁随意开辟便道;对出矿区运输车辆轮胎进行清洗,降低运输车辆对外部运输道路造成扬尘污染。
 - (3) 其他措施:
- ①装卸时间尽量要避免大风及下雨天气,同时应尽量降低落差,同时要加强管理,装卸场所应采取经常洒水及清扫。
- ②加强个体防护,如作业人员戴防尘口罩,加强采装、运输设备操作室的密封。
- ③柴油机采用增压中冷技术、燃油电喷技术等可提高柴油机功率、降低油耗, 以减少柴油燃烧废气排放量。
 - ④采矿区尽量减少人为扰动,爆破应选择每天温度相对较低的时段进行。

6.2.1.4 破碎粉尘防治措施

为减少粉尘排放量,向预破碎矿石表面洒水,破碎时进行洒水抑尘。原矿、 废石在井下溜矿、装车等作业地点采取洒水喷雾降尘措施。在 2 处破碎硐室内各 配置一台湿式除尘器(除尘效率不低于 99%),破碎硐室周边设置水喷雾除尘系 统,经湿式除尘器净化后废气排至回风巷道,最终排出地表。

湿式除尘器防治措施可行性分析:

本项目井下破碎硐室采用的湿式除尘器为文丘里除尘器,是使含尘气体与水密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使颗粒增大的装置。

文丘里除尘器由引水装置(喷雾器)、文氏管本体及脱水器三部分组成,在 其中实现雾化、凝并和脱水三个过程。文氏管本体由渐缩管、喉管及渐扩管所组 成。含尘气流由进风管进入渐缩管,气流速度逐渐增加,在喉管中,气流速度最 高。此时由于高速气流的冲击,使喷嘴喷出的水滴进一步雾化(雾化过程)。在 喉管中由于气液两相的充分混合,尘粒与水滴不断碰撞凝并成为更大的颗粒(凝 并过程)。气流在渐扩管内速度逐渐降低,静压得到一定的恢复。已经凝并的尘 粒经连接管进入脱水器中。由于颗粒较大,在一般的分离器(如旋风分离器)中 就可以将其分离出来(脱水过程),使气流得到净化。

文丘里除尘器是一种高阻力的湿式除尘器,具有效率高(除尘效率可达 99%)、结构简单、布置灵活、投资费用低等优点,缺点是阻力大,一般为 6000~7000帕。文丘里除尘器常被用在矿石破碎、炼钢炉与冲天炉的烟气净化。

本项目采用文丘里除尘器处理破碎硐室的破碎粉尘,除尘效率可达 99%,处理后的粉尘经井下通风系统排除地表后,通风井出口处粉尘浓度约 2.0mg/m³,能够满足《大气污染物综合排放标准》(16297-1996)表 2 新污染源大气污染物无组织排放浓度限值(1.0mg/m³)的要求。因此,本项目采用湿式(文丘里)除尘器处理破碎粉尘的措施合理可行。

此外,在非正常工况下,若破碎除尘系统故障,除尘效率将下降到0%,此 工况下粉尘对区域大气环境影响较大。因此,本次评价针对非正常工况粉尘排放 提出如下防治措施:

- ①破碎除尘系统故障或检修时,对应的破碎工艺设备应停止运行,待检修完毕后同步投入使用。
 - ②加强对生产设施和除尘系统的保养、检修、防止大气污染事故的发生。

6.2.2 地表水污染防治措施

(1) 矿坑(井) 涌水

矿井涌水中仅悬浮物浓度偏大,其余指标与现状地下水监测值基本相同,污水水质较为简单,无毒无害。矿坑(井)涌水排入Ⅳ号矿带沉淀池容积和 I 号矿带沉淀池,经絮凝沉淀后作生产用水,全部用于地表和井下生产用水及降尘、地表绿化、选矿厂选矿用水等,不外排。

当地地下水源补给源主要来自降水和融雪水,矿坑(井)涌水为开采矿床时渗出的裂隙水和部分孔隙水。矿山年工作300d,生产期间矿井涌水处理后作为生产、降尘等用水循环使用,项目无生产废水外排,对水环境无影响。废水循环利用措施符合项目区水资源现状,满足清洁生产循环利用的要求,减少了新水的供应量,符合绿色矿山发展目标。

企业委托编制了《新疆萨瓦亚尔顿金矿采矿工程人工阻隔方案设计》,采取布置挡水坝将萨瓦亚尔顿河截流,修建隧洞、引水涵管、盖板明渠进行河流改道,在基建期组织实施,以减少对水体的影响。此外,各场地地面进行防渗硬化、场地四周设挡水坝、上游设截洪沟,减少矿区范围内地表水对地下水的补给量,以有效防止露天+地下开采对地下水的影响。

(2) 生活污水

生活污水经同时建设的选矿厂地埋式一体化污水处理设施(处理规模: 15m³/h)处理达标后用于矿山绿化和降尘;非灌溉期,尾水通过抽排水工程输送至选矿厂用于选矿生产,不会对矿区地下水造成影响。

选矿厂内地埋式一体化生活污水处理设施采用 A/O 法,即兼氧/好氧处理工艺,设计处理能力为 15m³/h,生活污水处理工艺流程见图 6.2-1。

图 6.2-1 生活污水处理工艺流程图

污水处理站处理能力为 15m³/h。本项目新增劳动定员 352 人, 生活污水产

生量为 22.52m³/d(6758m³/a),满足地埋式一体化生活污水处理设施处理能力, 生活污水处理设施正常运行后处理本项目生活污水。

地埋式一体化处理设施有自由组合、适用广泛、不占用土地、运行经济等特点。接触氧化池以及水解酸化池可充分分解含油废水中的油类等有机污染物。其基本工作原理:生活污水经粗、细格栅后和经过预处理后的生产废水进入调节池,在其中达到均质、均量;然后进入初沉池以去除水中悬浮物等,进入初沉池后较大比重的悬浮物及颗粒物下沉到底部;而后进入水解酸化池,水解酸化工艺可将废水中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。经沉淀和水解酸化处理的废水进入接触氧化池,在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。接触氧化池下方分布曝气头以提升氧料,上方串挂气体弹性填料,有机物在水中利用好氧菌的作用得以去除。废水最后进入二沉池,经沉淀后外排,部分污泥回流到接触氧化池。拟建项目采用此项技术,是较为理想的方法,工艺简单,效果良好。一体化处理设施概况见图 6.2-2。

图 6.2-2 一体化地埋式处理设施概况图

综上,项目矿坑(井)水经沉淀处理后全部用于地表、井下生产用水及降尘、地表绿化、选矿厂选矿用水等,不外排;生活污水经采用生化处理后,出水用于绿化、抑尘洒水等。废水利用条件具备,可以实现本矿井废水的最大资源化利用。措施可行。

(3) 对地表水体的保护措施

根据《新疆维吾尔自治区重点行业环境准入条件(修订)》中"水环境功能区划为 I、II 类和具有饮用功能的III类水体岸边 1000m 以内,其它III类水体岸边

200m 以内,禁止新建或改扩建金属矿采选工程,存在山体等阻隔地形或建设人工地下阻隔设施的,可根据实际情况,在确保不会对水体产生污染影响的前提下适当放宽距离要求"之规定,为保护萨瓦亚尔顿河河水不受矿山开采生产废水的污染,人工阻隔方案设计要求建设地表人工阻隔设施,形成完整、有效的阻隔措施。在周边地表水体影响可接受的前提下,减少河流侧向补给,满足《新疆维吾尔自治区重点行业环境准入条件(修订)》(新环发(2017)1号)中"可根据实际情况,在确保不会对水体产生污染影响的前提下适当放宽距离要求"。

6.2.3 地下水污染防治措施

本工程对地下水资源保护的重点为矿坑(井)涌水的综合利用,对地下水水质保护重点,是废水处理后尽可能回用。

(1) 地下水资源保护措施

项目开采对金矿含水层破坏不可避免,该部分水资源主要以矿坑(井)涌水的方式产生。矿坑(井)涌水经处理后,一部分用于矿山生产,其余部分通过抽排水设施输送至选矿厂用于选矿生产。全部利用,不外排,矿井涌水综合利用率100%。

矿坑(井)涌水经处理后全部回用于下生产用水及降尘、地表绿化及降尘、 选矿厂选矿用水等,矿井涌水综合利用率100%。

(2) 地下水污染防治保护措施

1) 矿区污染防渗区划分

本工程采取分区防控措施,将矿区划分为重点防渗区、一般防渗区和简单防渗区,除污染区外的其余区域均为非污染防治区,非污染防治区不需采取防渗措施。矿区分区防渗图见图 6.2-3。

重点防渗区主要指位于地下、半地下的生产功能单元或其它易产生污染物质的场所,当污染物质泄漏后,不容易被及时发现和处理的区域,以及虽可被及时发现并处理,但污染物泄漏后污染状况较严重的生产功能单元。本工程重点污染防治区主要包括:机修间、危废暂存间、储油区等。

一般防渗区主要指裸露于地面的生产功能单元,污染物质泄漏后,容易被及时发现和处理的区域,以及其它需采取必要防渗措施的水工构筑物等;本工程一

般污染防治区主要包括可能产生废水及污染物泄漏的场地,具体为:工业场地、废石堆场等。

简单防渗区主要包括其他辅助设施场地、矿区道路等。

2) 全矿分区防渗措施

地面防渗工程设计原则:

- ①采用国际国内先进的防渗材料、技术和实施手段,确保工程建设对区域内 地下水影响最小,确保地下水现有水体功能。
- ②坚持分区管理和控制原则,根据场址所在地的工程地质、水文地质条件和 全厂可能发生泄漏的物料性质、排放量,参照相应标准要求有针对性的分区,并 分别设计地面防渗层结构。
- ③坚持"可视化"原则,在满足工程和防渗层结构标准要求的前提下,尽量 在地表面实施防渗措施,便于泄漏物质的收集和及时发现破损的防渗层。
 - ④可能泄漏危险废物的重点污染防治区设置检漏设施。
- ⑤防渗层上渗漏污染物和防渗层内渗漏污染物收集系统与全厂"三废"处理 措施统筹考虑,统一处理。

本工程项目区应划分为非污染区和污染区,污染区分为简单防渗区、一般防 渗区和重点防渗区。本工程防渗分区划分及防渗等级见表 6.2-2。

非污染区可不进行防渗处理,污染区则应按照不同分区要求,采取不同等级的防渗措施,并确保其可靠性和有效性。本工程设计采取的各项防渗措施具体见表 6.2-3。

	农 0.2-2		
防渗分区	定义	厂内分区	防渗等级
丢上阶涂豆	危害性大、毒性较	机修间、危废暂存 间、储油区、事故 池等	按照《危险废物贮存污染控制标准》
	大的生产装置区、		(GB18597-2001)及 2013 年修改单
重点防渗区	物料储罐区、危险		和危险废物暂存场所渗透系数达
	废物暂存区等		1.0×10 ⁻¹⁰ cm/s,满足防渗要求。
一般防渗区		工业场地、废石堆 场等	《一般工业固体废物贮存和填埋污
	无毒性或毒性小		染控制标准》(GB 18599-2020)I
	的生产装置区、装		类场标准相关要求进行建设,一般
	置区外管廊区		工业固体废物暂存场渗透系数
			达 1.0×10 ⁻⁷ cm/s。

表 6.2-2 本工程污染区划分及防渗等级一览表

防渗分区	定义	厂内分区	防渗等级	
简单防渗区	除污染区的其余	除污染区的其余区	进行地面硬化	
	区域	域	近11 地固硬化	

表 6.2-3 本工程设计采取的防渗处理措施一览表

序号	主要环节	防渗处理措施
1	排土场、矿区 道路等	建议采用水泥防渗结构,路面全部进行粘土夯实、混凝硬化;生产车间应严格按照建筑防渗设计规范,采高标号的防水混凝土,装置区集中做防渗地坪;接触酸碱部分使用 PVC 树脂进行防腐防渗漏处理。
2	危废暂存间、 机修间、事故 池	①对管道、阀门严格检查,有质量问题的及时更换,阀门采用优质产品; ②对各环节(包括生产车间、集水管线、沉淀池、排水管线、废物临时存放点等)要进行特殊防渗处理,如出现渗漏问题及时解决; ③对工艺要求必须地下走管的管道、阀门设专门防渗管沟,管沟上设活动观察顶盖,以便出现渗漏问题及时观察、解决,管沟与污水集水井相连,并设计合理的排水坡度,便于废水排至集水井,然后统一排入污水收集池; ④严格按照施工规范施工,保证施工质量,保证无废水渗漏
3	蓄水构筑物及 管网	①建立合理的废水收集管网,设计合理的排水坡度,使雨水与地坪冲洗水收集方便、完全。 ②各事故池、蓄水池等蓄水构筑物应采用防水混凝土并结合防水砂浆构建建筑主体,施工缝应采用外贴式止水带利外涂防水涂料结合使用,作好防渗措施。

(3) 地下水环境监测方案

为了及时发现项目运行中出现的对地下水环境不利影响,为地下水污染后治理措施制定和治理方案实施提供基础资料,建设单位应在项目运行前,建立起动态监测网络,并在项目运行中定期监测、定期整理研究、定期预报,及时识别风险并采取措施。

①监测布点

建设单位应加强对地下水环境的长期跟踪观测,预测水位和水质是否受到金矿开采的影响。根据导则要求,本次共设置3个地下水水质水位跟踪监测井,井位具体信息见表6.2-4。

编号	监测点名称	监测 类型	监测频率	监测项目
1	矿区地下水流向上 游	水	水位连续观 测,水质至少	pH、总硬度、溶解性总固体、硝酸盐、 亚硝酸盐、氨氮、硫酸盐、氯化物、氟
2	本工程矿区	位、	在丰水期和	化物、氰化物、挥发性酚类、砷、六价
3	矿区地下水流向下 游	水质	枯水期各监 测一次	铬、镉、汞、锰、铁、铅、高锰酸盐指 数、总大肠菌群、细菌总数

表 6.2-4 地下水跟踪监测井概况

②监测项目

水位监测: 监测水位。

水质监测:监测pH、总硬度、溶解性总固体、硝酸盐、亚硝酸盐、氨氮、硫酸盐、氯化物、氟化物、氰化物、挥发性酚类、砷、六价铬、镉、汞、锰、铁、铅、高锰酸盐指数、总大肠菌群、细菌总数共21项。

监测频率:水位采取连续监测;水质监测1年中分丰、枯两期各监测一次。

(4) 地下水污染风险应急预案

建设项目工业场地内,有出现地下水污染风险事故的可能。制定预案目的: 有序开展地下水污染事故处理,有效控制地下水环境污染范围和程度。结合本工程特点,参照有关技术导则,制定地下水污染事故处理程序见图6.2-4。

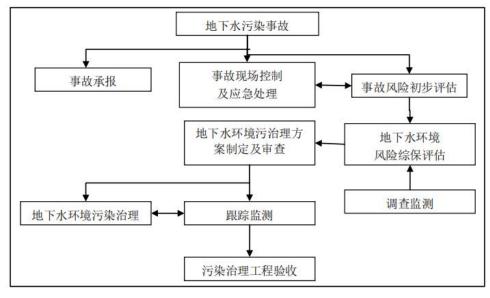


图 6.2-4 地下水污染事故处理程序图

出现下列情况时,可称为地下水污染事故:排土场淋溶液、排水处理系统出

现突发性的、大量的污染物外泄,并超过了防护装置的防护能力;排土场淋溶液、矿坑(井)涌水出现长时间、隐蔽性渗漏。

污染事故发生后,应及时进行现场污染控制和处理,包括阻断污染源、清理污染物等措施;必要时及时向各级政府上报。同时对污染事故风险及时作出初步评估,及时采取应对措施。

应急处理结束,在调查监测基础上,对事故所引起的地下水环境风险做出精确综合评价,包括对地下水环境及环境保护目标的短期影响、长期影响等。在事故造成地下水环境污染时,建设单位要提出地下水环境修复治理方案,经地下水环境监管部门审查通过后,组织实施地下水环境污染的修复治理工程,并由地下水环境监管部门进行工程验收。

(5) 地下水环境管理措施

设置地下水环境管理机构,为加强对地下水的污染影响预防、监测和管理工作,做到在生产过程中及时掌握建设项目生产对地下水环境的影响,预防和治理建设项目所诱发的环境水文地质问题,本环评建议建设单位应建立专门的水环境管理机构,配备专业管理人员,负责项目地下水水环境保护工作。

建设单位应根据地下水环境跟踪监测数据,编制《地下水环境跟踪监测报告》, 监测结果应按有关规定及时建立档案,并定期向建设单位负责人汇报,对于监测 数据应向当地生态环境主管部门报告并进行公开,满足相关法律法规关于公众知 情权的要求。监测机构、人员及装备的情况见环境管理与监测计划章节。

6.2.4 噪声污染防治措施

本工程产生高噪声的设备主要有空压机、凿岩机、装载机、通风机和爆破噪声,地面主要噪声源是通风机、凿岩机、空压机,各种设备距矿区边界都有一定距离,噪声经距离衰减、建筑隔声和空气吸收等作用,对地面声环境的影响较小。经预测,矿区边界噪声可以达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准的限值要求。

矿区降噪采取如下措施:

(1)坚持源头把关的原则,对矿区用的各种机电产品选型时,除满足工艺要求外,还必须考虑其具有良好的声学特征(高效低噪),或设计时建议配套提

供降噪设备。

- (2)对于不能更换的噪声源要采用隔声防噪措施,为高噪声设备设置密闭间。
- (3)提高部件加工精度和装配质量,减少摩擦或振动噪声,增加风机的阻 尼,避免机壳共振。
 - (4) 机器设备定期检修与保养,机器设备在正常状态下运转。
 - (5) 井口引风机采用变频调速,以降低噪声。
- (6) 凿岩机、通风机等固定的强噪声设备,在其与基础基础面上增加胶皮垫,以起到减振降噪的作用。
- (7)加强高噪声工序操作人员的劳动保护。对无法采取措施的作业场所, 工作时操作人员佩带耳塞、耳罩和头盔等个人防护用品。

在矿界周围 5km 范围内无永久性居民点,本工程所采取的噪声防治措施可行。

6.2.5 固体废物污染防治措施

(1) 采矿废石

本工程矿山年产废石(代码: 080-001-29)量为 22008.12 万 t/a,本工程设计矿山排土场 2 座,北部排土场布置于 IV 号露采场北出入沟东北侧约 400m 的山谷,主要用于堆存 IV 号矿带露采场部分废石及 I 号矿带露采场、地采所有废石。南部排土场布置于 IV 号矿带露采场南出入沟南侧约 900m 的山谷处,主要用于堆存 IV 号露采场部分废石及 IV 地采废石。北排土场废石堆存标高在 3470~3600m 之间,容积 1865.3×10⁴m³,堆置高度 130m;南排土场废石堆存标高在 3310~3480m 之间,容积 9693.7×10⁴m³,堆置高度 170m。本工程开采产生废石均临时堆放于排土场内,后期部分用于采区恢复和回填,综合利用。

排土场参照《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)对于第 I 类一般工业固体处置场所要求进行建设,当天然基础层饱和渗透系数不大于 1.0×10⁻⁵cm/s,且厚度不小于 0.75m 时,可以采用天然基础层作为防渗衬层;当天然基础层不能满足防渗要求时,可采用改性压实粘土类衬层或具有同等以上隔水效力的其他材料防渗衬层,其防渗性能应至少相当于渗透系数为

1.0×10⁻⁵cm/s 且厚度为 0.75m 的天然基础层。

本工程废石属第 I 类一般工业固体废物,根据《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)"第 I 类一般工业固废矿山废石可在原矿开采区的矿井、矿井等采空区中充填或回填"。

废石暂堆置排土场内,最终部分用于矿区恢复和回填采坑,最终去向符合《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)、《矿山生态环境保护与污染防治技术政策》。

(2) 生活垃圾

本环评要求对矿区生活垃圾进行资源化、无害化和减量化处理,生活垃圾集 中收集,定期运至乌恰县生活垃圾填埋场填埋处置。

(3) 沉淀池底泥

本项目 IV 号矿带矿坑(井)涌水采用 900m³ 沉淀池进行处理, I 号矿带矿坑(井)涌水采用 275m³ 沉淀池进行处理。沉淀池底泥(代码: 080-999-61)产生量约 298t/a。沉淀池底泥主要污染物为 SS,属于 I 类一般固废,送矿区废石堆场暂存,后期用于矿山土地复垦。

(4) 危险废物

本工程产生的危险废物为废机油、废油桶(危废代码为 HW08 900-214-08), 环评要求将上述危险废物统一收集至防渗危废暂存间,定期交由有危险废物处置 资质的单位进行处置。

本项目按照《危险废物贮存污染控制标准》(GB18597-2001)及其修改单相关要求建设面积为 20m² 的危险废物暂存间,且按要求做防渗处理,可满足本项目危险废物贮存要求。

1) 危险废物收集污染防治措施分析

危险废物在收集时,应清楚废物的类别及主要成份,以方便委托处理单位处理,根据危险废物的性质和形态,可采用不同大小和不同材质的容器进行包装,所有包装容器应足够安全,并经过周密检查,严防在装载、搬移或运输途中出现渗漏、溢出、抛洒或挥发等情况。对危险废物进行安全包装,并在包装的明显位置附上危险废物标签。

242

2) 危险废物暂存污染防治措施分析

危险废物应尽快送往委托单位处理,不宜存放超过一年,危废暂存执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单(环境保护部公告 2013 年第 36 号)中相关规定,项目危废暂存应做到以下几点:

- ①基础必须防渗,防渗层为至少 1 米厚粘土层(渗透系数≤10⁻⁷ 厘米/秒),或 2 毫米厚高密度聚乙烯,或至少 2 毫米厚的其它人工材料,渗透系数≤10⁻¹⁰ 厘米/秒。
 - ②堆放危险废物的高度应根据地面承载能力确定。
 - ③衬里放在一个基础或底座上。
 - ④衬里要能够覆盖危险废物或其溶出物可能涉及到的范围。
 - ⑤衬里材料与堆放危险废物相容。
 - ⑥在衬里上设计、建造浸出液收集清除系统。
- ⑦应设计建造径流疏导系统,保证能防止 25 年一遇的暴雨不会流到危险废物堆里。
 - ⑧危险废物堆内设计雨水收集池,并能收集25年一遇的暴雨24小时降水量。
 - ⑨危险废物堆要防风、防雨、防晒。
- ⑩产生量大的危险废物可以散装方式堆放贮存在按上述要求设计的废物堆里。
 - ①不相容的危险废物不能堆放在一起。
- ⑩总贮存量不超过 300kg(L)的危险废物要放入符合标准的容器内,加上标签,容器放入坚固的柜或箱中,柜或箱应设多个直径不少于 30毫米的排气孔。不相容危险废物要分别存放或存放在不渗透间隔分开的区域内,每个部分都应有防漏裙脚或储漏盘,防漏裙脚或储漏盘的材料要与危险废物相容。

危险废物贮存容器应满足:

- I、使用符合标准的容器盛装危险废物;应定期对暂时贮存危险废物包装及设施进行检查,发现破损,及时采取措施清理更换;
 - II、装载危险废物的容器及材质要满足相应的强度要求;
 - III、装载危险废物的容器必须完好无损;
- IV、盛装危险废物的容器材质和衬里要与危险废物相容,不相互反应。危废暂存间必须按(GB15562.2)的规定设置警示标志,周围应设置围墙或其它防护

- 栅栏,配备通讯设备、照明设施、安全防护服装及工具,并设有应急防护设施。
 - V、不相容的危险废物分开存放,并设有隔离间隔断。
 - VI、建有防风、防晒、防雨设施以及消防设施。
 - 3) 危险废物的运输和转移污染防治措施分析

对于危险废物的运输和转移,应根据《危险废物收集、贮存、运输技术规范》、《危险废物转移管理办法》(部令第 23 号)等的相关要求进行。

- I、企业应按国家有关规定办理危险废物申报转移的"五联单"手续,并在 贮运过程中严格执行危险化学品贮存、运输和监管的有关规定。产废单位在转移 危险废物前,应当向克州生态环境局乌恰县分局及新疆维吾尔自治区生态环境厅 报送危险废物转移计划;经批准后,领取并填写危险废物转移联单。产废单位应 当在危险废物转移前3日内报告移出地生态环境主管部门,并同时将预期到达时 间报告接受地生态环境主管部门。
- II、从事收集、利用处置危险废物经营活动的单位应当具备与其经营活动相应的资格,禁止产废单位将危险废物提供或者委托给无经营许可证的单位。
- III、所有危险废物均应按类在专用密闭容器中储存,并按规定贴标签。不得混装,废物收集和封装容器应得到接收企业及当环保部门的认可。收集的危废应详细列出数量和成分,并填写有关材料。
- IV、应指定专人负责危废的收集、贮运管理工作,运输车辆的司机和押运人 员应经专业培训。
- V、危险废物移出人、危险废物承运人、危险废物接受人(以下分别简称移出人、承运人和接受人)在危险废物转移过程中应当采取防扬散、防流失、防渗漏或者其他防止污染环境的措施,不得擅自倾倒、堆放、丢弃、遗撒危险废物,并对所造成的环境污染及生态破坏依法承担责任。
 - 4) 危险废物委托处置的可行性分析

本项目产生的危险废物经收集后暂存于危险废物暂存间,委托有危险废物处置资质的单位进行处置。

(5) 排土场临时堆放废石的可行性分析

本项目排土场周围设置了截洪沟,并采用浆砌石砌护,保证洪水沿着截洪沟顺畅流走,以防雨水冲刷废石形成泥石流,下游修建拦挡坝,防止废石场发生滑

坡危险;同时要经常进行稳定性监测,避免事故的发生;废石临时堆存于排土场,排土场地面应硬化处置,严禁乱堆乱排,随意堆弃。对排土场建立检查维护制度,定期检查维护截洪沟等设施,发现有损坏可能或异常,应及时采取必要措施,以保障正常运行;加强监督管理,设置环境保护图形标志。排土场内废石部分用于恢复矿区环境,并对场地平整,使排土场与周围地貌相协调,确保废石综合回用率达到55%以上,满足《新疆维吾尔自治区重点行业环境准入条件(修订)》(新环发〔2017〕1号)相关要求。

废石堆置应满足《有色金属矿山排土场设计规范》和《金属非金属矿山安全 规程》要求,排土场不属于重大危险源。

因此,在落实上述固废处置措施后,固废对环境影响较小,固废处置措施可 行。

6.2.6 土壤污染防治措施

本工程土壤污染防治措施按照"源头控制、过程防控和跟踪监控"相结合的原则进行控制。

(1) 源头控制措施

矿区主要土地利用类型为裸岩石砾地、低覆盖度草地,无永久基本农田,评价提出,对于土壤盐化区域以自然恢复为主,在局部区域土壤质量良好的地段,建设单位出资种植与项目区相适宜的植物,保证地表植被覆盖率不减少。

本工程运营期生活垃圾集中收集、集中处置,定期由乌恰县环卫所拉运至乌恰县生活垃圾填埋场填埋处理;废机油暂存至危废暂存间,危废暂存间地面防渗处理,委托具有相应危险废物处置资质的单位进行处置;矿山设置2座排土场用于运营期废石堆放。生活污水经矿山地埋式一体化污水处理设施(处理规模:15m³/h)处理达标后,处理达标后用于矿山绿化和降尘;非灌溉期,尾水通过抽排水工程输送至选矿厂用于选矿生产。

(2) 过程防控措施

污水处理后全部进行综合利用,不外排;固体废物得到妥善处置,不随意堆放。

本环评提出对项目区的危废暂存间进行防渗处理, 防渗层为至少 1m 厚粘土

层(渗透系数≤10⁻⁷cm/s),或 2mm 厚高密度聚乙烯,或至少 2mm 厚的其它人工材料,渗透系数≤10⁻¹⁰cm/s。危险废物妥善管理,谨防贮存、转移过程中出现风险事故。

(3) 跟踪监测

根据项目特点及评价等级确定,本次对矿山开采区土壤进行跟踪监测,具体设置如下:

①监测点位设置

监测点位同现状监测点位,后续可根据矿山开采情况进行调整。

②监测指标

《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)及《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)中的基本工程,同时监测特征因子、pH值和土壤含盐量。

③监测要求

项目区土壤评价为二级评价,每5年开展一次跟踪监测,取得监测数据要向社会公开,接受公众监督。

6.2.7 生态环境保护措施及生态恢复建设

6.2.7.1 矿山生态保护与恢复方案

依据《矿山生态环境保护与恢复治理技术规范(试行)》(HJ651-2013)及要求进行本工程的生态恢复建设。

6.2.7.2 矿山生态保护与恢复治理的一般要求

矿山生态保护与恢复治理的一般要求见表 6.2-5。

序号 保护与恢复治理要求 符合情况 禁止在依法划定的自然保护区、风景名胜 本工程不涉及自然保护区、风景名胜 区、森林公园、饮用水水源保护区、文物 区、森林公园、饮用水水源保护区、文 古迹所在地、地质遗迹保护区、基本农田 物古迹所在地、地质遗迹保护区、基本 1 保护区等重要生态保护地以及其他法律法 农田保护区等重要生态保护地及其他 规规定的禁采区域内采矿。 法律法规规定的禁采区,符合 矿产资源开发活动应符合国家和区域主体 本工程符合国家和区域主体功能区规 2 功能区规划、生态功能区划、生态环境保 | 划、生态功能区划、生态环境保护规划

表 6.2-5 矿山保护与恢复治理的一般要求

序号	保护与恢复治理要求	符合情况
	护规划的要求,采取有效预防和保护措施, 避免或减轻矿产资源开发活动造成的生态 破坏和环境污染。	的要求,企业已开展相关预防和保护措 施,符合
3	坚持预防为主、防治结合、过程控制的原则,将矿山生态环境保护与恢复治理贯穿矿产资源开采的全过程。根据矿山生态环境保护与恢复治理的重点任务,合理确定矿山生态保护与恢复治理分区,优化矿区生产与生活空间格局。采用新技术、新方法、新工艺提高矿山生态环境保护和恢复治理水平。	企业 2022 年 9 月已编制地质环境保护与土地复垦方案,设置有生态环境保护于恢复治理任务,目前企业正在开展本次地质环境保护与土地复垦方案编制工作,评审通过后将按照新方案实施。本矿山为井下开采,采用无底柱分段崩落采矿方法,符合
4	所有矿山企业均应对照本标准各项要求, 编制实施矿山生态环境保护与恢复治理方 案。	企业正在编制本次矿山生态环境保护 与恢复治理方案,评审通过后将按照新 方案实施,符合
5	恢复治理后的各类场地应实现:安全稳定,对人类和动植物不造成威胁;对周边环境不产生污染;与周边自然环境和景观相协调;恢复土地基本功能,因地制宜实现土地可持续利用;区域整体生态功能得到保护和恢复。	企业 2022 年 9 月已编制地质环境保护与土地复垦方案,目前企业正在编制本次扩建后的矿山生态环境保护与恢复治理方案,企业后期将按照复垦方案进行复垦,符合

6.2.7.3 矿山生态保护措施

- (1)限定车辆行驶路线,尽量在原有道路范围内行驶,禁止私开便道碾压破坏非施工区域原始地貌;
 - (2) 运营期应严格按照划定的开采范围进行开采;
- (3) 矿山开采应在矿区范围及各种采矿活动的可能影响区进行例行生物多样性现状调查,保护矿山生物多样性。减少开采、废石和运输等活动对动物及植物的破坏和扰动;
- (4) 排土场设置防护围栏和悬挂多种文字的警示牌,表土采取"三分一恢复",采取防洪、排水、边坡防护、工程拦挡等水土保持措施;经常进行稳定性监测,避免事故的发生;采取"先拦后弃",现有工程已按规范修筑拦石坝和截洪沟,应做好边坡防护和废石稳定工作,定期对排土场拦渣坝进行巡检,及时发现隐患并安全处置;加强监督管理,在废石滚落范围内不允许修建道路和建筑物,竖警示牌;

- (5)沿预测塌陷区外围设置铁丝围栏、警示牌,派专人定期对采空区地表 岩体移动范围进行地面变形监测,出现塌陷坑待其稳定后及时进行回填治理;塌 陷区恢复治理应综合考虑景观恢复、生态功能恢复及水土流失控制,根据塌陷区 稳定性采用生态环境恢复治理措施,按照《土地复垦技术标准(试行)》相关要 求恢复沉陷区的土地用途和生态功能;
- (6)为保护区域水源涵养及生物多样性维护功能,建设单位应高度重视区域水资源的保护工作,同时对矿区进行合理绿化;禁止猎杀野生动物,严禁破坏占地范围外的植被,尤其是保护动植物等;
 - (7) 采矿区尽量减少人为扰动,爆破应选择每天温度相对较低的时段进行。
 - (8) 防沙治沙措施

根据生态功能区划查询,项目占地属于水土保持功能区,不属于防沙固沙功能区,但在项目施工期、运营期及服务期满等阶段,均应加强防沙治沙措施的实施,防止土地沙化。

- 1、采取的技术规范、标准
- ①《中华人民共和国防沙治沙法》(2018年11月14日修订):
- ②《关于做好沙区开发建设项目环评中防沙治沙内容评价工作的意见》(林沙发[2013]136号);
- ③《关于加强沙区建设项目环境影响评价工作的通知》(新环环评发 [2020]138号);
 - ④《防沙治沙技术规范》(GB/T21141-2007):
 - 2、制定方案的原则与目标

制定方案的原则:①科学性、前瞻性与可行性相结合;②定性目标与定量指标相结合;③注重生态效益与关注民生、发展产业相结合;④节约用水和合理用水相结合;⑤坚持因地制宜的原则。

制定方案的目标:通过工程建设及后期运营,维持现有区域植被覆盖度,沙化土地扩展趋势得到遏制,区域生态环境显著改善。

3、工程措施

①严格依法坚持封禁保护,加强管理,严禁不合理利用土地、草地等资源行为,避免沙区植被资源遭到破坏。为了提高矿区植被的覆盖率,选择乔、灌、草

相结合, 目抗旱能力强的植被进行人工封沙种草。

- ②由于冬季风力较强,加上干燥的气候条件以及地表覆盖的植被较少,风沙较大。建设单位要重视防沙固沙工作,有效利用周围的环境条件,如在风沙区域增设沙障、固定沙丘,避免沙丘随大风肆意扩散,减少沙土的扩散范围。
- ③对现有植被加大保护力度。对现有植被资源加强保护,将其作为土壤沙漠 化治理工作的重中之重,原生植被具有较强的防风固沙作用,必须加大保护力度。 本工程不涉及物理、化学固沙及其他机械固沙措施。

4、植物措施

施工过程中,对于管线工程(如涉及),尽可能在植被覆盖度高的地段采取人工开挖,局部降低作业带宽度,减少对植被的破坏。

5、其他措施

- (1) 严格控制工业活动范围,严禁乱碾乱轧,避免对项目占地范围外的区域造成扰动。
- (2) 优化施工组织,缩短施工时间,施工作业时应分段作业,开挖的土方应分层开挖、分层堆放、分层回填,避免在风天气作业,以免造成土壤风蚀影响。
- (3)施工结束后对场地进行清理、平整并压实,场地实施场地硬化,避免水土流失影响。
 - (4) 严禁破坏占地范围外的植被。
- (5) 严禁在大风天气进行土方作业。粉状材料及临时土方等在堆场应采取 覆盖防尘布,逸散性材料运输采用篷布遮盖,减少施工扬尘产生量和起沙量。

针对施工机械及运输车辆,提出如下措施:施工期间应划定施工活动范围, 严格控制和管理运输车辆及重型机械的运行线路和范围,不得离开运输道路及随 意行驶,由专人负责,以防破坏土壤和植被,加剧土地荒漠化。

6.2.7.4 采矿场生态恢复

采矿场应平整、回填后进行生态恢复,并与周边地表景观相协调,恢复后的 采场进行土地资源再利用时,在坡度、土层厚度、稳定性、土壤环境安全性等方 面应满足相关用地要求。

6.2.7.5 排土场生态恢复

(1) 岩土排弃要求

合理安排岩土排弃次序,将有利于植被恢复的岩土排放在上部。

- (2) 排土场水土保持与稳定性要求
- ①排土场基底坡度大于1:5时,应将地基削成阶梯状。
- ②现有排土场已设置完整的排水系统,及防洪和排水设施。
- ③对排土场应采取坡脚防护或拦碴工程。
- (3) 排土场植被恢复
- ①充分利用工程前收集的表土覆盖于排土场表层,覆盖土层厚度根据植被恢复类型和场地用途确定。
 - ②不具备植被恢复条件的地方,应采用砂石等材料覆盖,防止风蚀。

采矿产生的废石集中堆放在排土场,排土场堆放作业时严格执行《金属非金属矿山排土场安全生产规则》(AQ2005-2005)。基建期和采矿产生的废石堆放在排土场,各矿段地下开采产生的废石堆放在排土场内。待矿山服务期满闭坑后,排土场内废石用于封堵风井口后回填各自对应的地面塌陷区,并进行平整,覆土后恢复植被,使排土场与周围地貌相协调,确保废石综合回用率达到60%以上,满足《新疆维吾尔自治区重点行业环境准入条件(修订)》(新环发〔2017〕1号)相关要求。并根据边坡的条件进行植被恢复,选择草种为当地常见种;在地表错动区外围设置围栏网,并设立警示标志,严禁人畜进入围栏内。

6.2.7.6 矿山公路生态恢复

矿区道路使用期间,在矿山所在区域应对道路两侧进行绿化。道路绿化应以 乡土树(草)种为主,选择适应性强、防尘效果好、护坡功能强的植物种,例如 原生植被以针茅等为主。

6.2.7.7 闭矿后生态恢复建设

按照边开采边恢复、终止采矿活动时必须完成恢复治理的原则,要做到预防为主,针对存在的问题,制定出预防措施,对生产中出现的问题要及时采取相应的措施予以解决,达到防灾、减灾的目的。

按矿山地质环境保护与土地复垦方案和对矿区排土场进行生态恢复治理;及时拆除地表一切无用建筑设施,设立多种文字警示牌。根据《矿山地质环境保护与土地复垦方案编制指南》等相关要求,建设单位已委托有资质的单位编制《矿山地质环境保护与土地复垦方案》并认真组织实施,加强矿山生态环境管理,推

进矿产资源开发过程中的生态环境保护与恢复治理。

6.2.7.8 采坑恢复方案

地下开采期间定期对开采区域进行巡视,若出现地面塌陷区,则划为禁入范围,矿山闭矿后如出现地面塌陷坑,利用废石进行回填,废石均回填至井内,对回填后的高陡边坡进行削坡处理,使之与周边环境协调。

根据各矿体开采结束时间,遵循"边开采,边治理"原则进行采矿工业场地的防治工程,其地形地貌景观的防治工程为:将区内地面建筑设施全部拆除,可再利用材料外运,废弃物用于封堵各风井口、平硐口,对场地进行平整处理,基本恢复原有地形地貌景观。

- ①将场地内拆除的砌体废弃物全部用于封堵风井、平硐口。
- ②矿山开采完毕后,将废石回填风井、平硐。剩余废渣石,回填至可能出现的塌陷区内并对场地进行整平,与周围地形地貌相协调。
- ③采场的场地整治和覆土方法根据场地坡度来确定。水平地和15°以下缓坡地可采用排土场废石进行回填利用,如物料充填、底板耕松、挖高垫低等方法;15°以上陡坡地可采用挖穴填土、砌筑植生盆(槽)填土、喷混、阶梯整形覆土等方法。具体矿山恢复方案按照《地质环境保护与土地复垦方案》要求执行。
- ④采场恢复与利用采场应平整、回填后进行生态恢复,并与周边地表景观相协调,恢复后的采场进行土地资源再利用时,在坡度、土层厚度、稳定性、土壤环境安全性等方面应满足相关用地要求。

6.2.7.9 绿色矿山建设措施要求

本次建设内需同步按照绿色矿山建设标准进行建设,具体建设要求如下:

(1) 废水排放

- ①矿山生产过程中应从源头减少废水产生,实施清污分流、雨污分流。采选过程中产生的生产废水,应有固定废水处理站和相关设施,采取针对性措施处理各类废水;生活污水处理设施应满足处理后水质要求。矿区生产污水与生活废水分开收集、处理,污水 100%达标排放。
- ②矿区应建有雨水截(排)水沟,地表径流水经沉淀处理后达标排放或用于厂区绿化。

(2) 废气排放

- ①采取喷雾、洒水、湿式凿岩、设置除尘器、全封闭皮带运输等措施处置采 选过程中产生的粉尘。
- ②推广使用清洁动力设备,降低生产过程中粉尘、废气排放量,保证空气新鲜:掘进工作面要设置负压吸尘净化装置,有效减少有毒有害气体排放。
- ③矿物和矿渣运输道路应硬化并洒水防尘,运输车辆应采取围挡、遮盖等措施,矿石运输车辆驶离矿区时采取保洁措施。
 - ④废石应有专用堆积场所,矿物堆场和临时料场应采取防止风蚀和扬尘措施。
 - (1) 固体废物排放
 - ①企业应当按照"减量化、资源化、无害化"的原则防止固体废物污染环境。
- ②禁止将危险废物混入非危险废物中贮存。堆存第 II 类一般工业固体废物的排土场应符合环保防渗要求;堆存危险废物,应按 GB8598 及其他危险废物的有关规定进行安全处置。
 - ③企业应采取科学的开采方法,减少废石等矿业固体废物的产生量和贮存量。
 - (4) 噪声排放
- ①对凿岩、碎磨、运输等生产中设备,通过消声、减振、阻隔等措施降低噪声。

(5) 环境保护

- ①重视地质灾害防治工作,无地质灾害隐患,次生地质灾害的防止与管理措施得力,近三年未发生重大的地质灾害。
- ②矿区专用道路两侧应进行绿化,设置截排水沟、挡土墙等相应保护措施,道路绿化应以乡土树(草)种为主,选择适应性强、防尘效果好、护坡功能强的植物种。
 - ③矿山临时用工业建筑物及设施拆除后应进行景观和植被恢复。
- ④沉陷区稳定性采用生态环境恢复治理措施,可按照 UDC-TD 相关要求恢复沉陷区的土地用途和生态功能;沉陷区稳定后两年内恢复治理率应达到 60%以上,尚未稳定的沉陷区应采取有效保护措施,防止造成进一步生态破坏和环境污染。
- ⑤排土场闭场后,应进行平整和覆土处理,依据景观相似性原则选择植物种进行绿化或景观恢复。

- ⑥排土场应分区分片整齐堆放;处于主导风向的下风向先堆放;及时碾压、 洒水和喷洒石灰水防止扬尘;设置截洪沟、排水沟、护坡等措施,防止水土流失、 滑坡和泥石流;设置终层覆土、土壤整治、培肥、种植;加强监测管理。
 - ⑧矿区绿化覆盖率达到可绿化区域面积的100%。

(6) 土地复垦

- ①矿山勘查及开采按照"谁损毁、谁复垦"的原则,由矿山企业负责复垦。 矿山企业切实履行矿山地质环境治理恢复与土地复垦义务,做到资源开发利用方 案、矿山地质环境治理恢复方案、土地复垦方案同时设计、同时施工、同时投入 生产和管理,确保矿区环境得到及时治理和恢复。
- ②排土场、矿区专用道路、矿山工业场地、塌陷区、开采作业区、矿山污染场地等生态环境保护与恢复治理,应符合 HJ651-2013 有关要求。
- ③排土场、采场、矿区专用道路等各类场地建设前,应视土壤类型对表土进行剥离。
 - ④矿山环境保护恢复基金专款专用,专门用于矿山土地复垦,不得挪作他用。
 - ⑤实行"边开采、边治理",实现生态修复动态化。
- ⑥建立土地复垦质量控制制度、对拟损毁的草地进行表土剥离,剥离掉的表土用于被损毁土地的复垦。
- ⑦地表仍在下沉、暂时难以治理的,应采取有效措施,把环境负效应控制在 最低限度之内。
- ⑧矿山经地质环境治理后的各类场地应安全稳定,对人类和动植物不造成威胁;对周边环境不产生污染;与周边自然环境和景观相协调;恢复土地基本功能,因地制官实现土地可持续利用。
- ⑨对排土场、矿井水、采场粉尘、噪音等污染源和污染物实行动态监测,并 向社会公开数据,接受社会公众监督。开采中和开采后应建立、健全长效监测机 制,对土地复垦区稳定性和质量进行动态监测。
- ⑩排土场植被恢复宜林则林、宜草则草、草灌优先、有周边自然景观协调; 不得使用外来有害植物种进行排土场植被恢复;生态恢复后的排土场因地制宜地 转为农业、林业、牧业、建筑等类型用地。

(7) 矿区环境

- ①矿区规划建设布局合理,矿区标识、标牌等规范统一、清晰美观、安全警示标志设置符合 GB14161 相关规定。
 - ②矿区生产、运输、贮存、生活,运行有序、管理规范。
- ③矿区(含职工生活区)地面工程系统及配套基础设施完善,道路平整规范、 主干道硬化、交通方便,运行安全。
 - ④主运输道路两侧应设置不小于15米隔离绿化带。
- ⑤厂址选择合理和排土场厂址应选择渗透性小的场地,防止对地下水的污染。设计应符合 GB50988 相关规定。
- ⑥矿石的生产、运输、储存过程中做好防尘保洁措施,确保矿区环境卫生整洁。
- ⑦生产过程中产生的废气、废水、噪声、废石、尾矿产生的粉尘等污染物得 到有效处置。
- ⑧充分利用当地矿区自然资源,因地制宜建设"花园式"矿山,基本实现矿区环境天蓝、地绿、水净。

6.2.8 闭矿后生态恢复方案

- (1) 生态恢复方案原则
- ①矿山企业要遵循在开发中保护、在保护中开发的理念,坚持"边开采、边治理"的原则,从源头上控制生态环境的破坏,减少对生态环境影响。对矿产资源开发造成的生态功能破坏和环境污染,通过生物、工程和管理措施及时开展恢复治理。
- ②根据矿山所处的区域、自然地理条件、生态恢复与环境治理的技术经济条件,按"整体生态功能恢复"和"景观相似性"原则,宜耕则耕、宜林则林、宜草则草、宜景建景、注重成效,因地制宜采取切实可行的恢复治理措施,恢复矿区整体生态功能。
- ③坚持科学性、前瞻性和实用性相统一的原则,鼓励广泛应用新技术、新方法,选择适宜的保护与治理方案,努力提高矿山生态环境保护和恢复治理成效和水平。
 - ④建设单位应严格按照《地质环境保护与土地复垦方案》进行矿区生态恢复

工作。

(2) 工程技术措施

工程技术措施是指工程复垦中,按照所在地区自然环境条件和复垦土地利用 方向要求,对受影响的土地采取各种工程手段,恢复受损土地的生态系统。本方 案根据项目所在区域的自然生态环境特征和复垦目标,结合各场地的复垦方式, 参照周边类似复垦项目生态重建技术的工作原理、复垦工艺、适用条件等,采取 适用于本工程的复垦工程技术措施,主要有以下几种:

①砌体拆除工程

砌体拆除主要针对工业场地。闭坑后建筑及设备不再使用,对建筑进行拆除。

②硬化层拆除

硬化层拆除主要针对工业场地等出现硬化层的区域,利用挖掘机对硬化层进行拆除。

③建筑废物拉运工程

砌体及硬化层拆除后,将无利用价值的建筑废物拉运采空区进行回填。

④平整工程

目的是通过平整土地,削高填低,达到复垦的要求。对区域地形的平整按照要求进行。

⑤表土覆盖工程

在复垦区进行表土覆盖,为播撒草籽作准备,覆盖厚度 0.2m-0.4m。

(3) 生物化学措施

生物化学措施主要是指在损毁土地上,通过土壤改良,按生态学和生态经济学原理进行组合与装配,从而恢复生态环境的土地复垦措施。

①改良土壤

根据矿区之前的土地绿化经验,项目区表土赋存总量基本满足工程的需要,但其物理性状不好,化学养分含量过低,为培肥地力,针对复垦区域增施有机肥,每公顷施用量 2000kg。

②选择物种

复垦区所处地区北温带大陆性干旱气候,地面植物遭到损毁后依靠自然恢复 较困难,且周期漫长。所以要快速恢复植被,首要的工作是筛选先锋植物和适生

植物以重建人工生态系统。

参考本工程植被分布及矿区的绿化栽植经验,草种选择沟蒿草、苔草或高寒垫状植物。

(4) 生态恢复

①矿床开采过程中采出大量的矿石和岩石,必然会出现一定范围的采空区,将破坏采矿场地范围内的土地,使这部分土地失去原先的用途;同时对采矿场范围外的土地利用也会带来严重的危害。根据《中华人民共和国土地管理法》(2020.1.1)第四十三条规定,"因挖损、塌陷、压占等造成土地破坏,用地单位和个人应当按照国家有关规定负责复垦;没有条件复垦或者复垦不符合要求的,应当缴纳土地复垦费,专项用于土地复垦。复垦的土地应当优先用于农业"。国务院还颁布了《土地复垦条例》(第592号),制定了"谁损毁、谁复垦"的原则。

因此,必须做到生产期间尽可能不断地恢复被破坏的土地,消除各种污染源的危害,在采矿结束后(即矿山服务期满后)对被遗弃的土地进行全面的恢复工作。

- ②根据采矿地质条件、发展远景及当地具体情况,制定矿山土地恢复计划。 该计划要纳入矿山设计中的开采、排弃计划,其内容包括利用土地的方式、采矿 恢复方法、回填岩石顺序等,且与生产建设统一规划,边开采边恢复。
- ③预留足够资金用于完成闭矿工作。闭矿后的资金问题是该期环境影响的关键,其资金因来源于开发利用该区域的生产企业。因此,企业对闭矿后的环境保护承担完全义务,在采矿运营阶段,应对闭矿后的环保资金预提,留足环保治理费用,用以矿山开采期满后的生态工程建设工作,使被挖损的和堆填的土地恢复其本来功能,使矿山开发对区域生态的影响控制在一定的范围内,保持区域生态环境的平衡。具体额度由设计部门核审。预留资金应设立专用账户,由相关部门监督使用。
- ④加强矿山的管理,矿山的生态恢复是采掘行业环境保护工作的重要内容之一,企业领导一定要将矿山的生态恢复工作落实到实处。首先要制定出生态补偿设计方案、实施计划和进度安排,并给予资金上的保证。其次是建立相应的监督管理制度,负责生态恢复计划的落实,对生态恢复的效果及时进行检查和总结,

推广成绩,改正不足。

- ⑤落实矿山恢复费用,《土地复垦条例》第十五条指出:土地复垦义务人应 当将土地复垦费用列入生产成本或者建设项目总投资。
- ⑥矿山工业场地不再使用的厂房、生活区设施、管线等各项建(构)筑物和 基础设施应全部拆除,并进行景观和植被恢复,应开展污染场地调查、风险评估 与修复治理。具体拆除类别如下:
 - a 拆除无后期需要的建(构)筑物。
 - b拆除矿山所有生产、生活设施,全场整理,自然恢复植被。
 - c将拆除产生的建筑垃圾清运至生态环境主管部门制定位置。
- ⑦闭矿后及时进行环境恢复治理和土地恢复工作尽可能恢复矿区环境和土 地使用功能,保持矿山环境与周边生态环境相协调。

7环境影响经济损益分析

环境影响经济损益分析是针对建设项目的性质和当地的具体情况,确定环境 影响因子,从而对项目环境影响范围内的环境影响总体做出经济评价。

根据理论发展多年的实践经验,任何项目工程都不可能对全部环境影响因子做出经济评价,因此,环境影响经济损益分析的重点,主要是对工程的主要影响因子做出投资和经济损益的评价,即项目的环境保护措施投资估算和经济效益、环境效益和社会效益以及项目环境影响费用一效益总体分析评价。

7.1 分析方法

费用一效益分析是最常用的建设项目环境经济损益分析方法和政策方法。利用该方法对建设项目进行分析将有利于正确分析项目的可行性。费用是总投资的一部分,而效益包括经济效益、社会效益和环境效益,即:

费用=生产成本+社会代价+环境损害;

效益=经济效益+社会效益+环境效益。

7.2 环保投资估算

本工程总投资 237201.06 万元,其中环保投资 5402.52 万元,占项目总投资的 2.28%,项目环保治理设施及投资估算见表 7.2-1。

	表 7.2-1 一种 K C N D D A T					
项目		环保措施概要	投资 (万元)			
	大气防治	施工场地、道路洒水,运输物料遮盖等	10			
	水环境	施工期临时沉淀池及环保厕所	5			
光工畑	噪声防治	合理布局,基础减振	3			
施工期	固废	弃土、弃方、建筑垃圾的处置,施工期生活垃圾的处 置	8			
	生态环境	场地平整、绿化	15			
运营期	废气	湿式凿岩,作业面洒水。排土场扩建及排土场及道路 洒水。排土场的围挡、抑尘网等措施。 密闭罩+除尘器+15m高排气筒、引风机各2套 全封闭厂房布置射雾器及抑尘喷枪	120			
	废水	排土场渗滤液收集池一个	5			

表 7.2-1 环保设施及投资一览表

	项目	环保措施概要	投资(万元)
	人工阻隔设施	截洪沟、拦洪坝等、事故水池等措施	4153.52
	声环境	高噪声设备进行基础减振,设备养护等	3
	田広	排土场建设,生活垃圾设置垃圾箱	50
	固废	废石回填	400
	地下水	地下水观测	30
	水土保持	工业场地、道路、排土场建设截、排水沟,建设拦挡 坝、挡土墙等工程措施	240
	地面隐患区	外围铁丝网围栏、外围设置警示牌	5
闭矿期	生态恢复措 施	排土场、工业场地、采矿区等土地复垦	350
	矿山闭矿后 地面治理	生活区及工业广场建筑设施拆除、清理;	5
	合计		5402.52

7.3 社会效益分析

本工程社会效益主要体现在以下几个方面:

- (1)本工程实施有利于促进当地金矿采掘行业的快速发展,满足当地金属及相关市场需求,可有效缓解当地市场压力,有利于市场竞争,并可带动当地相关产业发展,为当地下游行业提供发展机遇,可扩大当地相关产品消费市场,创造较大经济效益同时在一定程度上增加区域经济竞争力,促进当地社会可持续发展。
- (2)本工程需要聘用一批长期固定技术管理人员和生产工人,这就为当地剩余劳动力提供就业机会,促进当地就业,同时建设单位愿积极吸纳优秀大中专院校毕业生就业,一定程度上可缓解当前严峻就业压力,并可增加当地政府财政税收。

综上所述, 本工程具有良好社会效益。

7.4 环境效益分析

本工程环境效益集中体现在对生产中污染物的排放控制、资源的集中合理利用以及废物再利用,不仅可以减少企业在能源方面的投入,更重要的是使原本分散、未经任何处理的污染物得到了综合利用,并且实现达标排放;新增的绿地可

以美化环境,防风固沙,减少扬尘,改善当地小环境。

本工程在采用设计和环评提出的污染治理措施后,虽仍对区域环境产生一定的负面影响,但只要确保达标排放,其环境影响则可控制在允许范围之内。

7.5 经济效益分析

本工程综合经济指标见表 7.5-1。

表 7.5-1 综合技术经济指标表

序号	项目	单位	数值	备注
1	生产规模	万 t/a	450	
2	工作制度			
3	劳动定员	人	382	
4	建设周期	a	3	
5	总投资	万元	237201.06	
5.1	建设投资	万元	226587.08	
5.2	铺底流动资金	万元	3021.80	
5.3	建设期贷款利息	万元	7592.18	
5.4	利用采选固定资产净值	万元	72844.40	
6	成本与费用			
6.1	总成本费用	万元/a	94373	生产年平均
6.2	采矿单位制造成本	元/t	504.18	
7	综合经济效益指标			
7.1	年均利润总额	万元/a	52237	
7.2	年均利税总额	万元/a	64637	
7.3	年均税后利润	万元/a	44401	
7.4	投资利润率	%	16.47	生产年平均
7.5	投资利税率	%	20.38	
7.6	投资回收期	a	5.44	
7.7	贷款偿还期	a	6.71	

通过对本工程建设和投入生产后的经济预测,及结合实际情况,本工程具有财务上的可行性。

7.6 小结

本次项目扩建投产后,如能落实环评报告建议的环保设施,环境效益可观。 由此可知,本工程的建设可实现社会效益、经济效益和环境效益的统一。

8.环境管理与监测计划

8.1 建设项目环境管理

环境管理是现代企业管理制度的重要内容之一。通过实行全面、系统的环境管理使企业的各环境因素得到有效控制,更重要的是通过落实环境计划和环境政策对企业的环境状况进行调控,以达到改善环境绩效的目的。

企业环境管理涉及的范围包括:企业发展规划的制定、基础设施建设、环境目标制定等各项环境管理、环境监督活动等。目前企业的环境管理比较薄弱,人员配置和管理制度还不完善,针对企业存在的主要环境问题,环境管理包括以下具体内容:

8.1.1 环境管理依据

环境管理是运用计划、组织、协调、控制、监督等手段,为达到预期环境目标而进行的一项综合性活动。根据《中华人民共和国环境保护法》规定,国务院生态环境保护行政主管部门对全国环境保护工作实施统一监督管理。

《中华人民共和国环境保护法》第四章对我国长期以来实行的行之有效的环境管理制度进行了总结,并作出了11条规定。本次环境管理内容及制度均依据《中华人民共和国环境保护法》的规定严格指定和执行。

8.1.2 环境管理的目的及任务

1、环境管理的目的

环境管理是环境保护工作的重要内容之一,是现代企业管理的重要组成部分, 与企业内部生产管理、劳动管理、财务管理、安全管理同等重要。

随着国家环境管理力度的加强,环保法律、法规的完善及全民环境意识的增强,对企业环境保护工作要求也不断提高,这就要企业要加强自身环境管理机构建设,健全环境管理制度,制定环境管理职责,并将其列入企业议事日程,对企业内部生产、经营过程中发生或可能发生的环境问题进行深入细致的研究,制定合理污染防治方案以达到既发展生产,增加经济效益,又保护环境的目的。

2、环境管理的任务

对于项目来说,环境管理的基本任务是:控制污染物排放量,避免污染物对环境质量的损害。

为了控制污染物的排放,就需要加强计划、生产、技术、质量、设备、劳动、财务等方面的管理,把环境管理渗透到整个企业管理中,将环境管理融合在一起,以减少从生产过程中各环节排出的污染物。

项目需把环境管理作为工业企业管理的重要组成部分,建立环境污染管理系统、制度、环境规划、协调发展生产保护环境的关系,使生产管理系统、制度、环境污染规划协调生产与保护环境的关系,使生产目标与环境目标统一起来,经济效益与环境效益统一起来。

8.1.3 环境管理机构

项目已成立"事故防范和应急处理指挥小组"和"环保工作领导小组",小组由 2~3 名专职管理人员组成,负责项目环保管理工作和处理环保日常事务。公司生产组织采用董事会领导下的总经理负责制,在总经理的领导下实行三级管理:一级为公司主管领导;二级为安全环保部、生产技术部和环卫办;三级为各生产环节专、兼职环保人员。

环境管理机构的职责:

- (1) 贯彻执行环境污染保护法和标准;
- (2) 组织制定和修改企业的环境污染保护管理体制规章制度,并监督执行:
- (3) 制定并组织实施环境保护规划和标准;
- (4) 检查企业环境保护规划和计划;
- (5) 建立资料库,管理污染源监测数据及资料的收集与存档;
- (6) 加强安全生产教育,制定定期维修机器设备制度;
- (7) 监督"三同时"的执行情况,尤其重视污染处理措施的运行效果。
- (8) 监督检查环保处理设施和环保设备的运行情况:
- (9) 负责企业生产过程中发生的各种环境污染事故的调查及应急处理;
- (10)负责企业其他日常环境管理工作。
- (11) 积极配合当地环保部门的环境管理和环境监测工作。

8.1.4 环境管理内容

- 1、施工期环境管理内容
- (1)新疆紫金黄金有限公司应与本次环评项目的施工单位协商,将施工期环境保护责任纳入双方合同文本,要求施工单位认真落实施工的环境保护措施。
- (2)项目建设区生态环境较为脆弱,施工单位须严格按照环评报告书及批复要求进行合理施工,尽最大可能地减少地表扰动面积。
- (3)施工单位应配备专职环境管理人员,负责各类污染源的现场监控和管理,尤其是应严格控制高噪声、高振动施工设备的施工时间;严格限制粉状物料的露天堆放;严格控制进出施工场地车辆物料遗撒。
- (4)专职环境管理人员应做好文明施工的宣传工作,借助黑板报、宣传栏等工具对施工工人进行环境保护教育。
- (5)工程施工单位应自觉接受生态环境管理部门的监督指导,主动配合生态环境主管部门搞好项目施工期的环境保护工作。
- (6)建议建设单位按有关施工招标程序设置环境监理,并在当地生态环境部门的监督指导下,全面、规范地进行施工期的环境监理,以确保将施工期的生态环境影响降到最低。
 - 2、运营期环境管理内容
 - (1) 公司领导管理内容
 - ①负责贯彻国家环境保护法、环境保护方针和政策。
 - ②负责建立完整的环保机构,保证人员的落实。
 - (2) 安全环保部管理内容
- ①贯彻公司或上级生态环境有关的环保制度和规定。在公司领导下,做好生产区、办公区及其所属道路的绿化、美化工作。组织安排职工参加植树、种草等绿化及生态恢复工作。
 - ②汇总、编报环保年度计划及规划,并监督、检查执行情况。
- ③检查、督促各处室做好卫生、绿化工作。组织做好垃圾的定点堆放和清运工作。保证清洁人员按指定地段每日将道路清扫干净,控制路面扬尘、减少无组织排放。

- ④制定环境质量控制指标,提出环保考核项目和经济承包有关奖罚规定。
- ⑤参与污染事故调查,并向上级主管部门提出书面报告。
- ⑥对污染源进行监督管理,贯彻预防为主的方针,发现问题,及时向上级主管部门汇报,下达环保整改通知书,强化管理。
 - (7)对环境保护的先进经验、先进技术进行推广和应用。
 - ⑧对环境监测技术资料进行整理、统计、上报和存档。
- ⑨监督公司内环保设备的日常运行情况,包括收尘设备、污水处理设备、噪 声控制设备等,每月考核一次设备的运行情况,并负责对环保设备大、中修的质 量验收。
 - 3、退役期环境管理内容

退役期各管理机构主要的管理内容是监督生态恢复工作的落实,矿山开采闭 坑后必须按照矿山安全、地质恢复、环境保护工作的有关规定拆除无用的地面建 筑物,将破坏的地表推平,对受破坏的地表恢复原貌等工作。

8.1.5 环境管理制度

建立健全必要的环境管理规章制度,并把它作为企业领导和全体职工必须严格遵守的一种规范和准则,"有规可循,执规必严"是环境管理计划得以顺利实施的重要保证。各项规章制度要体现环境管理的任务、内容和准则,使环境管理的特点和要求渗透到企业的各项管理工作之中。

最基本的环境管理制度有如下几个方面:

- (1) 环境保护管理条列;
- (2) 环境质量管理规程:
- (3) 环境管理的经济责任制:
- (4) 环境保护业务管理制度;
- (5) 环境管理岗位责任制:
- (6) 环境技术管理规程;
- (7) 环境保护考核制度;
- (8) 污染物防治、控制措施及达标排放实施办法:
- (9) 环境污染事故管理规定:

(10) 清洁生产审计制度。

8.1.6 排污口规范化

排污口是企业污染物进入环境、污染环境的通道,强化排污口的管理是实施污染物总量控制的基础工作之一,也是区域环境管理逐步实现污染物排放科学化、定量化的重要手段。具体管理原则如下:

- (1) 向环境排放的污染物的排放口必须规范化;
- (2) 排污口应便于采样与计量监测,便于日常现场监督检查;
- (3)如实向生态环境主管部门申报排污口数量、位置及所排放的主要污染物种类、数量、浓度、排放去向等情况;
- (4) 废气排气装置应设置便于采样、监测的采样孔和采样平台,设置应符合《污染源监测技术规范》;
 - (5) 固体废物堆存场地要有防扬散、防流失措施。

环境保护图形标志具体设置图形见表 8.1-1。

 排放口
 废水排口
 废气排口
 固废堆场
 噪声源

 图形符号
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3<

表 8.1-1 环境保护图形标志设置图形表

8.2 施工期环境管理

8.2.1 环境管理

项目业主或者施工承包方进行工程施工前,应将施工期的环境污染控制列入施工工程内容,并在工程开工前和施工过程中制定相应的环保防治措施和工程计划。设专人负责管理,培训工作人员,以正确的工作方法,控制施工中产生的不利环境影响;必要时,还需在监测和检查工程施工的环境影响和实施缓解措施方面进行培训,以确保项目施工各项环保控制措施的落实。工程建设单位有责任配

合当地生态环境主管部门,对施工过程的环境影响进行环境监测,以保证施工期的环保措施得以完善和持续执行,使项目建设施工范围的环境质量得到充分有效保证。

并应采取以下措施:

- (1) 在本次改扩建工程实施前,要制定详尽的环保措施方案。施工过程中要设置环保人员,加强现场监督、管理与考核,以便及时发现问题及时解决。
- (2)施工期间应统一堆放产生的掘进废石,及时清运施工中产生生活垃圾, 送到指定点进行处置,施工期间产生的生活污水严禁随意排放。
 - (3)加强施工人员及施工机械的管理,增强环保意识,注意保护自然环境。
 - (4) 工程建设中,要做好施工区域及其周围的绿化工作。
- (5) 工程建设前,应做好施工人员的环保教育工作,禁止破坏周边植被及猎杀野生动物,禁止任何废污水和生活垃圾排入水体中。

8.2.2 环境监理

项目施工期环境监理内容详见表 8.2-1。

表 8.2-1 施工期环境监理一览表

序号	环境要素 监理内容		监理要求			
1	大气环境	①对工地及进出口定期洒水抑尘,并清扫,保持工地整齐干净; ②运输车辆在运输砂石等粉料时应使用篷布遮盖; ③禁止在大风天气施工作业。	1、建议在施工招标文件、施工 合同、环境监理招标文件和监 理合同中明确施工单位、环境 监理单位的环境保护责任和目 标任务;			
2	水环境	①施工产生的生活洗涤水经沉淀处理后 回用于施工降尘用水; ②避免在雨季进行基础开挖施工。	2、建议委托有资质单位开展建 设期的环境监理工作,加强施 工过程的环境监理和环保设施			
3	声环境	①合理布局施工设备,避免局部声级过高,对敏感点是否设置临时声屏障; ②开工15日前向生态环境主管部门申报 《建设施工环保审批表》。	建设的环境监理,定期向自治区、地区和县生态环境主管部门备案;3、结合环境监理报告,自查环			
4	固体废物	①施工期产生的掘进废石应综合利用; ②施工期生活垃圾集中收集, 定期清运。	评报告、批复文件及设计中规 定的环保设施和生态保护措施			
5	生态影响	①施工期间水土流失问题、矿石堆场及	建设及进展情况;严格落实环保投资和执行建设项目环境保			

序 号	环境要素	监理内容	监理要求
		主体工程开挖、弃渣及弃渣堆放应符合	护"三同时"制度;
		环境管理规范要求。	4、自觉接受当地生态环境主管
		②绿化面积达到规划要求。	部门在建设期的环境监督与管
		③禁止猎杀动物及破坏植物。	理;
			5、设立矿山环保机构,建立健
			全环境管理、环保资料档案等
			制度。

8.3 环境监测计划

环境监测制度是为环境管理服务的一项重要制度,通过环境监测,及时了解企业的环境状况,不断完善、改进防治措施,清洁生产,不断适应环境保护的发展要求,是实现企业环境管理定量化、规范化的重要技术支持。建立一套完善而行之有效的环境监测制度是企业环境保护工作的重要组成部分。

8.3.1 监测机构

考虑到矿区的实际条件矿区可不设监测机构,有关的环境监测工作可委托具有资质的第三方监测机构承担,确保监测计划的顺利实施。

8.3.2 监测内容

1、施工期监测内容

为了及时了解和掌握拟建项目施工期主要污染物的排放情况,建设单位应委托有资质的环境监测部门对其污染源和施工场界周边的环境质量进行监测,监测要求见表 8.3-1。

表 8.3-1 施工期环境监测要求

监测 类别	监测项目	监测点位置	测 点 数	监测频	技术要求
场界	施工场界	施工场界四	4	施工期	满足《建筑施工场界环境噪声排放标准》
噪声	Leq (A)	周	•	一次/季	(GB12523-2011)
环境	TSP	施工场地	2	施工期	满足《大气污染物综合排放标准》
空气	151	上、下风向	2	一次/季	(16297-1996)
生态	施工现场	施工场地	/	施工结 東后一 次	施工清理后,施工现场的弃土石方等废弃物的处置和生态环境恢复情况
环境	临时占地 恢复	施工临时占 地区施工营 地	/	施工结 東后一 次	临时占地地表结皮恢复或砾石压盖情况

2、运营期监测内容

结合《排污单位自行监测技术指南 总则》要求,运营期监测内容见表 8.3-2。

表 8.3-2 运营期环境监测计划表

	7 010 2 ~ CI/M-1 MILM (17 A) A						
环境 要素	监测点位	监测点位 监测因子					
大气	无组织排放粉尘 (矿区边界)	TSP	每季度一次				
	生活污水处理站进、出 口	pH、NH3-N、BOD5、COD、SS、LAS、动物油	每半年一次				
	项目区矿井涌水处理 站进、出口	水位、pH、悬浮物、化学需氧量、氟化物、 总氮、总磷、氨氮、总锌、石油类、总铜、 硫化物、总铅、总镉、总镍、总砷、总汞、 总钴	每半年一次				
水环 境	项目区地下水: (在矿区地下水上游布设对照井1口,在工业场地布设1口监测井,在地下水下游布设1口监测井,需记录打井点位、坐标、井深、井结构、监测层位等相关信息)	水位、pH 值、挥发性酚、总硬度、氨氮、 氟化物、氯化物、硝酸盐氮、六价铬、硫 酸盐、铅、砷、汞、镉、铜、锌、镍、溶 解性总固体、氰化物、亚硝酸盐氮、总大 肠菌群、K++Na+、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ₃ -、 Cl ⁻ 、SO ₄ ²⁻ 等	丰、枯水期各 监测 1 次				

环境 要素	监测点位	监测因子	监测频次
噪声	矿界四周	等效连续 A 声级	每季度一次
	工业场地、道路绿化率	工业场地绿化率	施工期及施
	施工区域	土壤侵蚀类型、侵蚀量	工结束后一 次
生态	矿区范围内	有效土层厚度、土壤容重、土壤质地、砾 石含量、pH 值、有机质等	3~5 年一次
	矿区及周边范围	野生动物种类、出现频率、种群数量	3~5 年一次
	矿区范围	地表岩移观测	3~5 年一次
土壤	工业场地及排土场附 近	pH、含盐量及砷、镉、铜、铅、汞、镍、 六价铬、锌等重金属	5 年一次

8.4 环境管理措施及环保行动计划

本工程环境管理措施及环保行动计划见表 8.4-1、8.4-2。

表 8.4-1 营运期环境管理措施

环境监控管理措施	实施方	监督管理
(1) 废气 ①工作面和采装点喷雾洒水降尘。 ②矿石装卸过程控制落差,降低扬尘量。 ③矿区道路路面作硬化处理及运输道路洒水 ④加强工人的个人防护 ⑤定期对矿区无组织排放粉尘进行监测	建设单位	克州生态环 境局乌恰县 分局
(2) 废水 生活污水严禁随意泼洒,集中收集后定期拉运至配套的选矿厂地 埋式一体化污水处理设施处理后综合利用,不外排。矿井涌水经 絮凝+沉淀法处理达标后,回用于生产。 加强矿区输送线路日常管理,矿区地下水上游、下游设立地下水 监测井定期进行地下水水质及水位监测,避免因事故排放造成的 对周边环境污染。加强矿区地下水监控。	建设单位	克州生态环 境局乌恰县 分局
(3)固体废物 ①废石合理堆放,尽量综合利用。 ②生活垃圾集中收集,运至垃圾填埋场处置。	建设单位	克州生态环 境局乌恰县 分局
(4)噪声 ①选用低噪声设备及必要的消声措施。 ②保持设备良好的运营工况,及时维修检修。 ③加强个人防护。	建设单位	克州生态环 境局乌恰县 分局

环境监控管理措施	实施方	监督管理
(5) 生态保护 ①控制开采活动地表扰动面积,禁止在红线范围内开采。 ②限制车辆行驶路线,减小影响范围。 ③做好水土保持工作。 ④开采结束尽快开展生态恢复建设工作。	建设单位	克州生态环 境局乌恰县 分局
(6) 安全措施 ①矿区安全出口、危险地带应设置相应标识,避免事故发生。 ②爆破严格按规程操作,保证安全。 ③加强爆破材料库的安全管理。 ④开采期保证井下通风风量,确保安全生产。 ⑤做好错动区的栅栏标识工作,防止人机误入引起伤害。	建设单位	克州生态环 境局乌恰县 分局
(7) 环境管理 建立环境管理,制定环境管理手段,按要求开展环境监测,完善 矿区环境管理工作。	建设单位	克州生态环 境局乌恰县 分局

表 8.4-2 环保行动计划

时段	环境问 题	环境保护措施	实施责 任单位	监督责 任单位
营运期	生态保护	1.对进入矿区的一切人员严格要求,不得随意乱扔垃圾,不得破坏植被,不得猎杀动物; 2.对于工程运营期产生的废土、废石和生活垃圾等都要进行定点处理排放,最大限度的保护项目区的周围环境; 3.对于采矿期和矿山公路修建期产生的废弃土石应及时综合利用,不在矿区内大量堆放。	建设单位	克州生 态环境 局乌恰 县分局
闭矿	生态保	矿山恢复、绿化	建设	
期	护	14 四次夏、绿化	单位	

8.5 环境保护竣工验收计划

为便于环保主管部门对工程项目进行竣工验收,现按照国家和自治区的有关规定,提出如下环境保护"三同时"验收一览表。

表 8.5-1 环境保护"三同时"验收一览表

工段	类 别	污染源	环保设施	数量 (套)	治理对 象	效果及要求
运	废	矿井废	通风系统	1	矿井	《大气污染物综合排
营	气	气	掘进工作面和局部硐室设	1	废气	放标准》

工段	类 别	污染源	环保设施	数量 (套)	治理对象	效果及要求	
期			置局扇			(GB16297-1996)	
	湿式凿岩作业、湿式上						
		和出渣、爆破					
			安装矿井水量的在线计量				
		矿井涌	装置,矿井涌水经絮凝沉	1	矿井涌 水	全部回用,不外排	
		水	淀处理达标后全部回用,	1			
			不外排。				
			集中收集后定期拉运至配				
		生活污	套的选矿厂地埋式一体化	1	生活污 水	 全部回用,不外排	
		水	污水处理设施处理后综合	1		THE 1/11, 11 /1111	
	废		利用。				
	水		新建3口地下水监测井(在		地下水	地下水满足《地下水 质量标准》 (GB/T14848-2017) III类标准	
			矿区地下水上游布设对照				
			井1口,在工业场地布设1				
		地下水	口监测井,在地下水下游	3			
			布设1口监测井,需记录				
			打井点位、坐标、井深、				
			井结构、监测层位等相关				
		* F	信息)				
	噪	空压 机、通	置于室内隔声,出口安装		噪声	厂界噪声达到《工业	
	声	が、	消声器、基础减振,室内 隔声	/			
	固废	八小時		1	废石	放标准》3 类标准	
		废石				废石综合利用,防止	
			一			矿山泥石流、滑坡等	
						对地表的影响	
		危废	工队交生与用及地址加州				
			 废机油、废油桶暂存于防		危废	《危险废物贮存污染	
				1		控制标准》	
			有资质单位处置	_		(GB18597-2001)及	
						2013 年修改单	
		生活垃	生活垃圾集中收集,送乌	_	生活	A	
		圾	恰县生活垃圾填埋场处置	1	垃圾	合理处置	
	环	古北い	25. 異声技术处。 ELVISE A	1	收集事故状态下的废水,确保任		
	境	事故水	设置事故水池,用以收集		何事故情况下未经处理的废水		
	风	池	事故废水			不外排	

工段	类 别	污染源	环保设施	数量 (套)	治理对象	效果及要求	
	险						
	应						
	急						
	措						
	施						
	生	生态监	定点定期持续进行生态	,		/	
生	态	测	动态监测	/	/		
态	环	施工场		,	对论	工連流进分析有	
	境	地恢复	/	/	对施工遗迹进行恢复		
	生态态	土地恢	拆除不用的建筑,恢复土	,	景观和植被恢复		
		复	地原有功能	/	尽	观和恒板恢复	
闭			井口封堵完整,错动区充				
矿		井口封	其或者设置围栏采取遮	/	矿山闭矿。	后安全管理, 防止野生	
期		堵	挡和防护措施,并设立警		动物	掉进矿井及错动区	
州			示牌				
		采矿回	废石回填,尽可能恢复原	/	恢复地表植被		
		填	有地貌				

8.6 排污清单

本工程排污清单见表 8.6-1。

表 8.6-1 项目排污清单一览表

污染类		污染	污染	排放浓度	排放量	环保措施	排放标准	
牙	H	源	物	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	11 / 八里	2个不有地	1十八人作作	
		凿岩						
		及爆	TSP	,	9.882t/a	湿式凿岩		
		破粉	151	/	9.882Va	业 八 闰石		
		尘					《大气污染物综合排放	
井		运输	TOD	/	2.7124/-	洒水降尘、铺	标准》(GB16297-1996)	
下	下 废	扬尘	TSP	/	3.712t/a	垫碎石		
开	气	堆场	TSP	TCD	,	12 5944/2	洒水降尘	
采		扬尘		/ 13.58	13.584t/a	13.384// 個小阵主		
		柴油	СО	/	10.64t/a			
			NO_X	/	48.73t/a	,		
		燃烧	THC	/	18.09t/a	/	/	
			SO ₂	/	3.104t/a			

污药	杂		污染 物	排放浓度	排放量	环保措施	排放标准
	废水	矿井涌水	废水量	/	0t/d	絮凝+沉淀处 理后,全部回 用,不外排	《污水综合排放标准》 (GB8978-1996)表1第 一类污染物最高允许排 放浓度限值、《大气污染 物综合排放标准》 (GB16297-1996)、《城 市污水再生利用 城市杂 用水水质》 (GB/T18920-2002)中 杂用水质标准
		生活污水	废水量	/	0m³/a	定期拉运至配 套的选矿厂地 埋式一体化污 水处理设施处 理后综合利 用。	《污水综合排放标准》 (GB8978-1996)中三级 标准
	固 废	生活垃圾	生活垃圾	/	52.8t/a	生活垃圾集中 收集,送乌恰 县生活垃圾填 埋场处置	合理处置
		采矿废石	采矿废石	/	22008.12 万 t/a	放置于排土场 内,定期洒水, 压实平整处 理,最终用于 采区回填,堆 场进行覆土恢 复	项目主要固体废物为采矿废石,执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)中相关标准,《危险废物贮存污染控制标准》(GB18597-2001)及2013年修改单(环保部公告(2013)第36号)的有关规定。
		废机油		/	8t/a	收集至矿区防 渗危废暂存 间,定期交由 有危废处置资 质的公司进行	《危险废物贮存污染控制标准》 (GB18597-2001)及 2013 年修改单

新疆萨瓦亚尔顿金矿采矿工程环境影响报告书

污染类别	污染 源	污染	排放浓度	排放量	环保措施	排放标准
					处置	

9 结论与建议

9.1 工程概况

项目名称:新疆萨瓦亚尔顿金矿采矿工程

建设单位:新疆紫金黄金有限公司

建设性质:新建

建设地点: 矿区距乌恰县西北约 110km, 矿区至乌鲁克恰提乡有 45km 简易公路相接, 萨瓦亚尔顿河流经IV号矿带各矿体上盘, 东经 74°18′5.6″-74°18′59.05″, 北纬 40°4′21.12″-40°6′5.68″。

建设规模:本项目建设规模为年产 180×104t 金矿石。

本项目主要开采对象为IV号矿体和 I 号矿体,新增建设内容包括:露采坑、 采矿工业场地、排土场、表土堆场、办公生活区、爆破器材库及其他辅助工业场 地组成。

9.2 符合性分析

本工程为金矿开采项目,根据《产业结构调整指导目录》(2019年本), 本工程不属于产业政策鼓励类、限制类、淘汰类,视为允许类,本工程的建设符 合国家产业政策。

在实施人工阻隔的前提下,项目选址与空间布局符合性及污染防治与环境影响符合性,满足《新疆维吾尔自治区重点行业环境准入条件(修订)》(新疆维吾尔自治区环境保护厅,2017年1月)的有关要求。符合《新疆维吾尔自治区"三线一单"生态环境分区管控方案》及《克孜勒苏柯尔克孜自治州"三线一单"生态环境分区管控方案》中的相关要求。

金矿开采矿种主要为金矿石,矿区建设对加快推进天山西部矿产资源勘查开发起着积极作用,符合《新疆维吾尔自治区国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》(2021 年 2 月 5 日新疆维吾尔自治区第十三届人民代表大会第四次会议通过)中的相关规定,同时,本工程的建设也符合《克孜勒苏柯尔克孜自治州国民经济和社会发展第十四个五年规划和 2035 年远景目标纲

要》及《乌恰县国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》中的相关内容。

9.3 环境质量现状

9.3.1 环境空气质量现状

本工程位于克孜勒苏柯尔克孜自治州乌恰县境内,据环境空气质量模型技术支持服务系统筛选结果显示:克孜勒苏柯尔克孜自治州 2021 年 SO₂、NO₂、PM₁₀、PM_{2.5}年均浓度分别为 4ug/m³、13ug/m³、76ug/m³、24ug/m³;CO24 小时平均第 95 百分位数为 1.4mg/m³,O₃ 日最大 8 小时平均第 90 百分位数为 130ug/m³;超过《环境空气质量标准》(GB3095-2012)中二级标准限值的污染物为 PM₁₀。本工程区域环境空气质量不达标。

TSP24 小时平均浓度值满足《环境空气质量标准》(GB3095-2012)二级标准。

9.3.2 水环境现状

监测及评价结果表明:萨瓦亚尔顿河各地表水质监测指标标准指数均小于 1, 未超过《地表水环境质量标准》(GB3838-2002)中 I 类标准。

监测结果表明: 地下水各监测因子均满足《地下水质量标准》(GB/T14848-2017)中的III类标准。

9.3.3 声环境现状

项目所在区域声环境质量现状均满足《声环境质量标准》(GB3096-2008) 2 类区标准限值,评价区域内的声环境质量较好。

9.3.4 土壤环境现状

根据评价结果,占地范围内土壤各监测点监测结果均能达到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值要求;占地范围外土壤各监测点监测结果均能达到《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)农用地土壤污染风险筛选值。

9.4 环境影响评价

9.4.1 大气环境影响评价

根据估算结果,粉尘无组织排放下风向占标率为8.60%,小于10%,满足《环境空气质量标准》(GB3095-2012)二类区标准要求。

9.4.2 水环境影响评价

矿井涌水采用絮凝+沉淀处理后,满足《污水综合排放标准》(GB8978-1996) 表1第一类污染物最高允许排放浓度限值,并且满足《城市污水再生利用 城市 杂用水水质》(GB/T18920-2002)中杂用水质标准后,全部用于地表及井下生 产用水及降尘、地表绿化及降尘、选矿厂选矿用水等,不外排;本工程生活污水 经依托选矿厂污水处理设施处理达标后综合利用,不外排。

9.4.3 声环境影响评价

经预测后,本工程预测值满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)中2类标准。

9.4.4 固体废物影响评价

运营期固体废物主要来源于矿石开采过程中的废石、废机油、除尘灰及生活垃圾等。

矿区新增2个排土场,矿山开采废石均堆放于排土场,用于回填采区。

本工程产生的危险废物为废机油、废油桶,危废类别 HW08-900-214-08,年 产生危废约 8t/a,统一收集至矿区防渗危废暂存间,定期交由有危废处置资质的 公司进行处置。

本工程生活垃圾集中收集、集中处置,定期运至配套选矿厂,并与选矿厂生活垃圾一同送乌恰县生活垃圾填埋场处置。

在严格落实以上各项环保措施的情况下,项目产生的各类固体废物均得到了 合理处理处置,不会对周围环境产生明显影响。

9.4.5 环境风险分析

本工程发生事故的类型主要为泄露及火灾爆炸,本工程发生环境风险事故影响范围主要为矿区及邻近矿区的工作人员,影响范围不大,本工程在设计过程中充分考虑了防爆、防火措施及设施,同时设计及施工过程将严格按照国家及行业有关标准、规范进行。

本工程发生事故后的影响范围主要在矿区内部,在严格落实设计及隐患治理

中的各项环境风险防范措施、强化和完善环境风险应急预案并持续改进、加强管理和培训教育、严格执行各种规章制度的前提下,能尽量避免上述事故的发生,可以将环境风险水平降低到一个较小的水平之内。在落实本报告书中提出的环境保护措施的前提下,因地制宜地进行环境优化,本工程的环境风险在采取上述措施并加强管理及风险防范措施得当的情况下,项目风险是可以接受的。

9.5 防治措施

9.5.1 大气环境防治措施

井下采矿生产过程中产生含粉尘和 SO_2 、 NO_x 等有害污染气体,为保护采矿工作面的空气质量,采用矿井通风等措施,稀释和排出有害气体及粉尘,确保作业地点有良好的空气质量,保证矿工的安全和健康。

对矿山采矿场、工业广场、运输道路等无组织扬尘点定期进行洒水降尘,同时还应采取其它抑尘措施,在矿石堆放、装卸过程中尽量降低落差,加强调度管理,矿石及时运输,减少矿石堆放时间。

对运输道路路面进行硬化,进行定期及时清扫,采取洒水措施,并控制车辆行驶速度,保持交通道路清洁。加强对道路的维护,保证其路面处于完好状态,平整完好的路面可以大大减少汽车尾气和扬尘量。

本工程环评要求选择封闭式振动筛,在破碎机出料口、喂料斗装料口以及各胶带转载卸料点设置密闭罩,并安装除尘器进行除尘。通过上述措施后,可减小本项目粉尘排放对区域的影响。

9.5.2 水环境防治措施

矿井涌水采用絮凝+沉淀处理后,满足《污水综合排放标准》(GB8978-1996) 表1第一类污染物最高允许排放浓度限值,并且满足《城市污水再生利用 城市 杂用水水质》(GB/T18920-2002)中杂用水质标准后,全部用于井下生产用水 及降尘、地表绿化及降尘、选矿厂选矿用水等,不外排;本工程生活污水依托选 矿厂污水处理设施处理达标后综合利用,不外排。

9.5.3 声环境防治措施

本工程产生高噪声的设备主要有空压机、湿式凿岩机、装载机、通风机和爆破噪声, 地面主要噪声源是通风机等, 各种设备距矿区边界都有一定距离, 噪声

经距离衰减、建筑隔声和空气吸收等作用,对地面声环境的影响较小。经预测,矿区边界噪声可以达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准的限值要求。

9.5.4 固体废物

运营期固体废物主要来源于矿石开采过程中的废石、废机油、生活垃圾等。 矿区新增2个排土场,矿山开采废石均堆放于排土场,用于回填采区。

本工程产生的危险废物为废机油、废油桶,危废类别 HW08-900-214-08,年 产生危废约 8t/a,统一收集至矿区防渗危废暂存间,定期交由有危废处置资质的 公司进行处置。

本工程生活垃圾集中收集、集中处置,定期运至配套选矿厂,并与选矿厂生活垃圾一同送乌恰县生活垃圾填埋场处置。

在严格落实以上各项环保措施的情况下,项目产生的各类固体废物均得到了 合理处理处置,不会对周围环境产生明显影响。

9.5.5 生态恢复措施

根据本工程开发利用方案并结合《有色金属行业绿色矿山建设规范》 (DZ/T0320-2018)对本工程生态恢复、生态管理与监控及生态恢复。

9.6 环境管理与监测

按照《建设项目环境保护管理设计规定》和《冶金工业环境保护设计规定》有关规定,矿山在开发建设同时,应结合企业生产与当地环境实际,建立健全矿山环境管理机构和各项规章制度,规范企业的环境行为,推行清洁生产、循环经济,实现节能减排。

建设期、运营期污染源和环境监测可委托当地有资质的环境监测站或第三方监测公司承担。同时,企业应建立健全污染源监控和环境监测技术档案,主动接受当地生态环境行政主管部门的工作指导、监督和检查。

环境监测应按国家和地方环保要求,采用国家规定标准监测方法进行;应按 照规定,定期向有关生态环境主管部门上报监测结果。

9.7 总量控制

根据《关于印发新疆维吾尔自治区加强涉重金属行业污染防控工作方案的通知》,金矿采选不属于重金属行业,本工程原矿石鉴定涉重金属为微量,可不申请重金属总量指标。

9.8 公众参与

新疆紫金黄金有限公司按照《环境影响评价公众参与办法》(生态环境部令第4号)的要求进行了本工程环境影响报告书的公众参与调查,本工程在公示期间未收到公众通过网络、电话及书信等方式提出的意见。

9.9 总体结论

根据《产业结构调整指导目录》(2019年本),本工程为金矿采选类项目,属于产业政策允许类,本工程的建设符合国家产业政策要求。本工程采矿工艺属于目前国内较成熟应用较广的工艺技术,工艺路线符合清洁生产的要求,项目环评期间未收到公众的反对意见。本工程应在主体工程与环保工程同时竣工完成后,方可投入运营。本工程符合国家产业政策和环保政策要求,具有良好的经济效益和社会效益,可满足当地环境保护目标要求。在严格落实人工阻隔方案的前提下,以及本报告提出的环保、节能降耗措施,特别是污染防治和风险防范措施后,从保护环境的角度出发,本工程的建设是可行的。

9.10 建议

- (1) 应委托有资质的单位对排土场进行设计并施工。
- (2)严格按要求做好粉尘的治理工作,确保无组织排放污染物达标排放。 严格落实固体废物的收集、处置措施,避免对周围地表水、地下水环境造成污染。
- (3)积极开展清洁生产审核工作,采用国内先进的处理量大,能耗低、效率高的设备,按照清洁生产二级标准执行环境管理工作,不断完善清洁生产工艺水平。
- (4) 开展工程环境监理工作。在项目施工招标文件、施工合同和工程监理 招标文件中明确环保条款和责任,开工前编制完成施工期环境监理实施方案,报 具有审批权限的地方环境保护主管部门备案,定期向各级生态环境行政主管部门 提交监理报告,并将环境监理情况纳入环保验收内容。

(5) 本工程建成后 3~5 年内,应开展环境影响后评价,重点关注工程建设的生态环境影响,根据后评价结果,及时补充、完善相关环保措施。